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The Effect of Ionic Strength on the Absorption Spectrum of Plasma-Injected Solvated 
Electrons* 

Daniel Martin a, Hernan E. Delgado b, David M. Bartels c, Paul Rumbach a, and David B. Go a,b  

(a) Department of Aerospace and Mechanical Engineering, University of Notre Dame (dmarti25@nd.edu) 
(b) Department of Chemical and Biomolecular Engineering, University of Notre Dame 

(c) Department of Chemistry and Biochemistry, Radiation Laboratory, University of Notre Dame 
 

The study of plasma-liquid interactions is an emerging field with multifarious applications, 
which are driven by chemical species created in the plasma or at the plasma-liquid interface, such as 
the hydroxyl radical (OH), hydrogen peroxide (H2O2), and, in particular, solvated electrons (eaq

-).  
The solvated electron is an electron in a polar solution, loosely confined in a potential well 

formed by the solvent molecules, and notable for being a powerful reductant.  Historically, solvated 
electrons have been studied by using pulse radiolysis and laser photolysis.  However, recently we 
confirmed their presence in a direct current (DC), atmospheric pressure, liquid anode discharge using 
phase-locked, total internal reflection absorption spectroscopy (TIRAS). The measured absorption 
spectrum appeared to be blue shifted from the well-established dilute solution spectrum, and one 
possible explanation is that the local ionic strength in the double layer at the plasma-liquid interface 
alters the solvation potential well via increased Coulombic interactions.  

In this work, we use TIRAS to measure the absorption spectrum as a function of the solution 
ionic strength and compare the results to measurements produced using pulse radiolysis in order to 
resolve any differences in the spectra of plasma-injected and bulk-produced solvated electrons. 
 
* Work supported by the Army Research Office and Rickover Fellowship Program 
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Investigating a Plasma Source for Generating Ultrasonic and Ultraviolet Radiation in 
Water*  

Joseph R. Groele a and John E. Foster b 

(a) University of Michigan, Dept. Mechanical Engineering, Ann Arbor, MI, USA 
(b) University of Michigan, Dept. of Nuclear Eng. & Radiol. Sciences, Ann Arbor, MI, USA  

(jrgroele@umich.edu, jefoster@umich.edu) 
 

 
Ultrasonic and ultraviolet (UV) radiation in water can lead to the production of hydroxyl 

radicals, and are thus considered oxidation processes capable of removing organic contaminants from 
waters and wastewaters. Combining both ultrasonic and UV irradiation in water can increase 
contaminant removal efficiencies beyond those of the individual techniques, and traditionally involves 
both high-power ultrasonic transducers and UV lamps.[1] Here, a plasma source is investigated for 
generating ultrasound and UV light simultaneously in water. Ultrasound transmitted to water is 
measured using a hydrophone, while the UV intensity is assessed using a radiometer and by chemical 
actinometry. Hydrogen peroxide concentrations are measured as a function of treatment time, 
suggesting hydroxyl radical production in the liquid. 

 
* Work supported by the National Science Foundation  
 
References 
[1] V. Naddeo, M. Landi, V. Belgiorno, and R.M.A. Napoli, J. Hazard. Mater. 168, 925 (2009). 
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Scaling Relativistic Laser-solid Interaction Using Ultrashort Laser Pulses 
 

Jinpu Lin, John Nees, Alec Thomas and Karl Krushelnick 
 

Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 (linjinp@umich.edu) 
 

 
There has been growing interest in relativistic laser-solid interaction as a compact source of 

relativistic electron beams and hard x-rays. Femtosecond hard x-ray pulses have important applications 
such as probing time-resolved x-ray absorption and diffraction. Relativistic electrons from solid targets 
have superior properties in beam charge and divergence than those from wakefield acceleration in 
underdense plasmas, and can find applications in warm dense matter creation, electron radiography, seed 
of wakefield accelerators and fast ignition researches. In this work, the 30fs laser pulses are focused 
down to near diffraction-limit spot size to achieve relativistic intensity (𝑎଴ ൐ 1) and ablate into a thick 
(~mm) glass target. We investigate the scaling laws of this interaction in terms of laser wavelength 
(0.8µm, 1.3µm and 2µm), laser energy (millijoule to joule level), angle of incidence (grazing, 45° and 
normal) and preplasma scale length (0.1𝜆 𝑡𝑜 5𝜆). Particle-In-Cell simulation (PIC) and particle tracking 
shows that the incident half and reflected half of the laser pulse form a standing wave to accelerate 
electrons to relativistic (MeV) energy. 

 
Funded by AFOSR FA9550-16-1-0121 
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Comparative Study of an Atmospheric Pressure Helium Plasma Jet Driven by Unipolar 
Nanosecond-pulses  

 
T. Y. Tang a, H. W. Kim a, G. H. Kim b, B. Lee b, H. J. Lee a 

 
(a) Department of Electrical and Computer Engineering, Pusan National University, South Korea 

(haejune@pusan.ac.kr) 
(b) Korea Electrotechnology Research Institute, South Korea 

 
 

Dielectric barrier discharge (DBD) is a classical 
construction to produce non-thermal plasma at atmospheric 
pressure [1]. A nanosecond-pulse power source transfers 
energy to electrons of atmospheric pressure discharges in a 
nanosecond scale and shows different plasma chemistry 
from slow sinusoidal discharges. It is important to 
understand how the pulse parameters affect the discharge 
such as pulse height, pulse width, and repetition frequency. 
In this experiment, a dielectric barrier discharge plasma jet 
developed by Pusan National University lab was instigated. 
Optical emission spectrometry (OES) shows that the pulse 
repetition frequency dominantly affects the plasma density 
more than the other pentameters do. With the widely-used 
equivalent circuit model and measure data of the DBD, 
electrical parameters including discharge current, discharge 
voltage and discharge energy per cycle are calculated [2,3]. 
We found that the pulse voltage plays a dominant role in the 
discharge energy in a single pulse cycle, but the repetition 
rate plays a dominant role in the formation of the overall 
radical generation. The water contact angles on the PDMS 
with the variation of the control parameters are also 
presented. 

References 
[1] A. Fridman, A. Chirokov, and A. Gutsol, J. Phys. D: Appl. 
Phys. 38, R1(2005). 
[2] S. Tao et al., J. Phys. D: Appl. Phys. 41, 215203 (2008). 
[3] S. Liu and M. Neiger, J. Phys. D: Appl. Phys. 36, 3144 (2003). 

 

 
Figure 1 – The change of the water-drop 
contact angle over time on the PDMS film 
treated by a He plasma jet for the variation 
of (a) frequency and (b) pulse width. Red 
dots represent the AFM measurement 
time. 
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Impact of Magnetic Shielding on Efficiency of Krypton Operation* 
 

Leanne L. Su and Benjamin Jorns 
 

University of Michigan (leannesu@umich.edu) 
 

Krypton operation on Hall thrusters has the advantage of higher specific impulse and lower prices 
at the cost of lower thrust compared to xenon. This results in a device that fills a different mission space 
than xenon-powered Hall thrusters. On high-power Hall thrusters, krypton-operated Hall thrusters could 
fly space science missions to the outer planets and beyond [1]. We expect krypton efficiency to be lower 
than xenon efficiency due to its lower atomic mass and higher ionization energy threshold. However, 
experimental results have shown that xenon Hall thruster anode efficiencies are 5-15% higher than those 
of krypton operation; these experimental krypton efficiencies fall further below theoretical values than 
xenon efficiencies [2,3,4]. 

This phenomenon is thought to be mitigated by the side effects of magnetic shielding. Magnetic 
shielding is a recently-developed technique that takes advantage of the isothermal nature of magnetic 
field lines, shaping them in a Hall thruster channel such that energetic ions do not impact the channel 
walls [5]. This field topology has been shown to extend Hall thruster lifetimes by multiple orders of 
magnitude [5,6]. Magnetic shielding also causes electron temperatures along centerline to reach higher 
values [6]. Comparing krypton and xenon ionization curves show that for a given change in electron 
temperature, the ionization cross-section of krypton increases by a larger factor than the ionization cross-
section of xenon [7]. Consequently, we expect increased electron temperatures to cause a larger increase 
in the efficiency of krypton operation than the efficiency of xenon operation; the ratio between xenon and 
krypton efficiencies on a magnetically-shielded Hall thruster should be closer than it would be on an 
unshielded thruster. Additionally, high-voltage operation has been shown to improve krypton efficiency 
[3,4]. We can explore the magnitude of this effect at high voltages compared to lower voltages. 
Therefore, there is an apparent need for an experimental investigation of krypton efficiency on a 
magnetically-shielded, high-power Hall thruster and a comparison of results to xenon efficiency. 

To evaluate this potential increase in efficiency, we operate the H9, a 9-kW magnetically-shielded 
thruster, on krypton and compare its efficiency to previous measurements on xenon at five different 
operating conditions. An experiment was conducted in the Large Vacuum Test Facility (LVTF) at the 
University of Michigan wherein the H9 was mounted to a thrust stand and run at five different operating 
conditions up to 9 kW. A null-type inverted pendulum thrust stand was used to take thrust measurements 
and calibrated mass flow controllers used to take mass flow measurements. We then compare the 
difference between krypton and xenon efficiencies to the difference typically seen on unshielded Hall 
thrusters. 
* Work supported by the National Science Foundation 
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Interaction of Relativistic Magnetized Electrons with Obstacles* 
 

Brandon K. Russell a, Paul Campbell a, Karl Krushelnick a, Gennady Fiksel a, Phil Nilson b, and Louise 
Willingale a 

(a) Center for Ultrafast Optical Science, University of Michigan (bkruss@umich.edu) 

(b) Lab for Laser Energetics, University of Rochester 

 
Using a laser pulse from the OMEGA EP laser system focused to an intensity of ~1019W/cm2 we 

generate hot electron plumes on the surface of 25μm thick Al targets with high magnetization due to self-
generated fields, given by σcold = B2/μ0nemec

2 > 1. These plumes expand at ~c and interact with obstacles 
in the form of holes, or “blobs” of glue on the target. This interaction is probed using time-resolved 
proton radiography which allows for the measurement of fields in the plane of the target. The proton 
radiographs are analyzed using standard radiograph inversion codes and are compared to 2D and 3D 
particle-in-cell simulations.  
 
* This material is based upon work supported by the Department of Energy / NNSA under Award 
Number DE-NA0003606. The authors would like to acknowledge the OSIRIS Consortium, consisting of 
UCLA and IST (Lisbon, Portugal) for providing access to the OSIRIS 4.0 framework. Work supported 
by NSF ACI-1339893. 
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Vacuum Ultraviolet and Visible Spectroscopy for Power Flow Studies on the 1 MA, 
100 ns MAIZE LTD* 

 

Trevor Johannes Smith a, Stephanie Miller a, Paul C. Campbell a, George Dowhan b, Nicholas M. 
Jordan a, Mark D. Johnston c, George R. Laity c, Ryan D. McBride a,b 

(a) Nuclear Engineering & Radiological Sciences, University of Michigan (smtrevor@umich.edu) 
(b) Applied Physics, University of Michigan 

(c) Sandia National Laboratories 
 

Power flow studies on the 25-MA Z machine at Sandia National Laboratories have shown that 
plasmas present in the Z machine’s magnetically insulated transmission lines (MITLs) can result in a 
loss of current delivered to the load. This presentation reports on efforts to develop spectroscopic 
diagnostics for power flow experiments on the University of Michigan’s 1-MA MAIZE facility to 
validate ongoing simulation studies.  

A vacuum ultraviolet (VUV) spectrometer will be used to measure the rate at which various 
constituents desorb out of the MITLs on MAIZE.  These experiments will be run with scaled anode-
cathode dimensions to obtain electric field intensities or current densities comparable to those found in 
certain regions of the Z machine. The VUV range (100-200 nm) was chosen due to the expectation of 
low levels of black-body emission, supported by preliminary simulations with PrismSPECT. Visible 
spectroscopy on MAIZE will allow comparison with VUV data on MAIZE and with published visible 
spectroscopic data from the Z machine. These comparisons will help inform efforts to implement VUV 
spectroscopy on the Z facility. 
 
*This work was supported by Sandia National Laboratories through the Campus Executives Program 
and the LDRD Program, under Project 20-9240. Sandia National Laboratories is a multi-mission 
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., 
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s NNSA under contract 
DENA-0003525.  
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Numerical Optimization of a Rotating Magnetic Field Field-reversed Configuration 
Thruster 

 
Joshua M. Woods and Benjamin A. Jorns 

 
University of Michigan, Ann Arbor, MI 48105, USA (jmwoods@umich.edu) 

 
The field-reverse configuration thruster (FRC) is an electric propulsion concept that utilizes 

plasmoids confined in a field-reversed configuration for pulsed propulsion. FRCs are an attractive 
option for in-space propulsion due to their high specific impulse and ability to use a multitude of 
propellants [1].  While the principles of forming plasmoids in a field-reverse configuration for 
confinement have been well established in the fusion community, key aspects of their use as thrusters 
remain poorly understood. 
  FRC thrusters generate a plasmoid by inducing azimuthal currents in a plasma column confined 
by a steady background axial magnetic field.  At a threshold value, the magnetic field resulting from 
the flowing azimuthal current reverses the background axial field near the plasma centerline, resulting 
in a self-contained magnetic structure populated by a high density plasma [1]. This magnetic plasmoid 
is then accelerated by a Lorentz force that results when the azimuthal currents in the plasmoid interact 
with a gradual radial gradient in the background field. Multiple techniques exist for generating the 
azimuthal current including, but not limited to, using planar coils and the conical θ-pinch technique. In 
this study, rotating magnetic fields (RMFs) form the azimutha currents. Given a sufficiently high RMF 
magnitude, the electrons become tied to and rotate synchronously with the field lines. 

Research on FRC thrusters has steadily grown over the past decade. Prototypes of FRC 
thrusters exist and have been tested with a variety of propellants [1]. However, there are still open 
questions about how the thrust and efficiencies depend on the thruster operating conditions. This study 
uses the dimensionless form of a circuit model previously derived by Woods et al to determine optimal 
operating parameters for an RMF-FRC [2]. Following the method of optimizing an FRC thruster, the 
various operating parameters are folded into a set of dimensionless terms [3]. Using a genetic 
algorithm, the circuit is optimized to produce the highest efficiency operating conditions. The 
ramifications of the optimal condition are discussed in the context of thruster performance and design. 
 
References 
[1] Slough, John, David Kirtley, and Thoomas Weber, “Pulsed Plasmoid Propulsion: The ELF Thruster,” IEPC-
2009-265, 31st International Electric Propulsion Conference, Ann Arbor, Michigan, September 20 – 24, 2009 
[2] Woods, J. M., Jorns, B. A., and Gallimore, A.D., “Circuit Modeling of Rotating Magnetic Field Field-
reversed Configuration Thrusters“, 54th AIAA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 
AIAA-2018-4911, July 9-11, 2018 
[3] Niemela, C. S. and King, L. B., “Numerical Optimization of an Annular Field Reversed Configuration 
Translation Experiment,” 31st International Electric Propulsion Conference, Ann Arbor, Michigan, September 
2009. 
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Data-Driven Modeling of the Effect of Background Pressure on the Operation of a Hall 
Effect Thruster 

Matthew P. Byrne and Benjamin A. Jorns 

University of Michigan, Department of Aerospace Engineering (mpbyrne@umich.edu) 
 

 
Hall effect thrusters (HET) are increasingly becoming one of the most widely used electric 

propulsion technologies. Yet, one of the major unanswered question about the operation of HETs is the 
validity of using ground measurements to predict the behavior of the thruster on-orbit. It is not yet 
possible to recreate true space conditions in the laboratory. Facility backpressure can have a significant 
effect on the operation of HETs, influencing key thruster properties such as thrust, plume divergence, 
cathode operation, discharge current oscillations, and plume plasma parameters like ion current density 
[1]. There is then a strong motive to develop a method to map ground-based measurements to on-orbit 
behavior. One way others have attempted to address this problem is through parametric studies, 
systematically lowering the facility pressure to map the dependence of key thruster properties on 
backpressure [1]. Extrapolation can be used to then map these trends to space-like pressures, however, it 
is not clear what type of extrapolation should be used or if there is even a valid way to extrapolate over 
such a large range. Additionally, the only way to truly validate the extrapolation is with orbital tests 
which are prohibitively expensive. The goal of this study is to develop methods which can predict with 
uncertainty how thruster properties will transition from ground to flight conditions based solely on 
ground measurements. Multiple models with various functional forms are tested and their most probable 
fitting parameters are estimated using a Bayesian parameter estimation method with a nested Markov 
Chain Monte Carlo sampling approach [2]. Finally, the trained models are used to estimate the properties 
of an SPT-100 thruster under orbital conditions with a well-defined uncertainty envelope. These 
predictions are compared to orbital measurements from the Russian express missions [3] to quantify the 
accuracy of the model.  

References 
[1] Kevin D. Diamant, Raymond Liang, and Ron L. Corey., AIAA Propulsion and Energy Forum, (AIAA-2014-
3710)  
[2] Sivia, D. S., and Skilling, J., Data Analysis: A Bayesian Tutorial, 2nd edition, Oxford University Press, 2006 
[3] D. Manzella, R. Jankovsky, F. Elliott, I. Mikellides, G. Jongeward, and D. Allen, 27th International Electric 
Propulsion Conference, Pasadena, California, 2001 
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Modeling Collisional Ionization Using a Modified Binary-Encounter-Bethe Model in 
the Particle-in-Cell Code OSIRIS* 

Stephen DiIorio a, Benjamin Winjum b, Joshua May b, Ryan Phillips c, Jennifer Elle c and  

Alexander Thomas a 

(a) University of Michigan (diiorios@umich.edu) 
(b) University of California, Los Angeles 

(c) High Power Electromagnetics Division, Air Force Research Laboratory 
 

Collisions, and subsequently collisional ionization, have become necessary to a proper 
understanding of plasma dynamics in a variety of situations. For example, collisional ionization must be 
used to properly model electron bunch propagation over long distances (up to several meters or more) 
outside vacuum. To correctly simulate these problems, it is important to develop and implement 
computational models that accurately depict the complex atomic physics of these interactions. However, 
difficulties can arise when the atomic structure and electron configuration of an atom greatly alters the 
binding energy and cross sections to be used in these formulations. We have implemented a collisional 
ionization routine in the particle-in-cell code OSIRIS that draws on examples and advancements from 
other particle-in-cell codes. We use a modified binary-encounter-Bethe model to calculate atomic cross-
sections along with the Monte Carlo collisional scheme in order to model inter- and intra-species 
collisional ionization in both relativistic and non-relativistic regimes. We present details of the 
implementation and results from running OSIRIS using this new collisional ionization module. 
 
* Work supported in part by the Air Force Office of Scientific Research under grant FA9550-19-1-0072. 
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Azimuthal Current Measurement in an Expanding Magnetic Field 

Shadrach Hepner a and Benjamin Jorns 

University of Michigan (shadrach@umich.edu) 
 

Magnetic nozzles consist of expanding magnetic fields applied to a plasma exhaust to convert 
thermal energy into thrust. Since they often implement an externally-mounted radio frequency or 
microwave antenna for ionization, they can operate for extended durations without eroding any current-
carrying components. A potential shortcoming of these devices is that a plasma that remains too strongly 
attached to the magnetic field will return to the thruster, negating thrust. While ions are often unaffected 
by the magnetic field in low-power versions of these devices due to their inertia, electrons may follow 
the fields more strictly, generating electric fields that will cause the ions to diverge or return to the 
thruster as well. Thus, some mechanism for electron cross-field transport is necessary for thrust 
generation.   

In this work, we measured directly for the first time the magnitude and extent of this anomalous 
electron resistivity in a magnetic nozzle plume.  This was done on a 30 W magnetic nozzle test article 
located at the University of Michigan (Ref. [1]). We employed plasma probes to characterize the 
background plasma properties and resulting gradients in potential and pressure.  We in turn measured the 
electron drifts in the plume directly by employing a translating B-dot probe following the techniques 
outlined Refs. [2, 3].  Combing these measurements of plasma properties and current with a generalized 
Ohm’s law allowed us to determine the effective resistivity in the plume. In parallel, we determined the 
classical resistivity from Spitzer collisions with the plasma properties found by the Langmuir probe. 
Assuming that electron-neutral collisions are negligible, we subtracted this value from the total resistivity 
to yield an anomalous resistivity term. In keeping with our previous work [4], we have found that the 
anomalous resistivity is orders of magnitude higher than classical. We discuss that this discrepancy may 
be a result of the presence of drift-driven instabilities in the plume.  
 
* Work supported by a NASA Space Technology Research Fellowship number 80NSSC17K0156 
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Magnetized turbulence in the compressible magneto-hydrodynamic (MHD) regime is important in 
the evolution of terrestrial and astrophysical plasmas as it mediates an exchange of magnetic, kinetic, and 
thermal energies between different length scales. Large scale kinetic flows break down into smaller 
kinetic eddies that build up magnetic energy through the small scale dynamo. These kinetic eddies in turn 
dissipate energy down to smaller scales and eventually into thermal heating. Modeling these energy 
changes is essential for high fidelity numerical plasma simulations.  However, fully capturing magnetic 
turbulence in a simulation can require high temporal and spatial resolutions that cannot be feasibly 
simulated in large systems. Instead, we can develop and incorporate models of the turbulence below the 
grid resolution of low resolution simulations. Fine tuning such sub-grid models requires first 
understanding the behavior of turbulence in a variety of regimes in high resolution simulations of 
idealized systems. 

To help develop sub-grid models of turbulence for decaying magnetized turbulent flows, we 
simulated the magnetized  Taylor-Green vortex over a range of flow velocities and magnetic field 
strengths. The magnetized Taylor-Green vortex is a periodic flow with imposed magnetic field that 
decays into a chaotic, magnetized turbulent flow.[1] The model is free from external drivers of 
turbulence, mimicking intermittently driven flows that are common in nature. Simulations were done 
using K-Athena, a performance portable conversion of the plasma simulation code Athena++,  which 
facilitated high resolution simulations on several computing platforms.[2,3] 

We present the kinetic and magnetic energy spectra  of the resulting turbulent flow under a range 
of different parameters. Additionally, we show analysis of the kinetic and magnetic energy budgets of the 
plasma and of how energy is transferred between different energy reservoirs.[4] By simulating the 
Taylor-Green vortex at sufficiently high resolution with compressible MHD, broad properties of 
decaying magnetized turbulence can be better quantified. 

 
* Work supported by Blue Waters at the National Center for Scientific Computing and the Michigan 
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The study of plasma-surface interactions is an emerging field for a wide variety applications, 
including sustainable energy (catalytic H2 production), environmental remediation (water purification), 
medicine (sterilization), and high-value manufacturing (nanomaterial synthesis). These applications are 
driven by species created in the plasma or at a plasma-surface interface, such as free electrons, gaseous 
ions, excited molecules and radicals, driving chemistry at a surface. Here, we develop a new dielectric 
barrier discharge (DBD) configuration to produce surface DBDs over a three-dimensional geometry.  
The motivation for this geometry was to embed the plasma source inside a packed bed (e.g., catalyst) 
reactor that had tight spatial restrictions so that it could be implemented in a commercial Fourier 
transform infrared (FTIR) spectrometer instrument.  

The design, which we term a helical DBD, was inspired by surface DBD configurations often 
employed in plasma actuators for fluid dynamics applications. However, rather than using a 2D surface 
common in plasma actuators, the helical DBD uses the 3D surface of a cylinder as its dielectric, 
allowing for greater plasma coverage and in this case, greater interaction with a packed bed. This study 
characterizes the electrical properties of the helical DBD in both free space and within a packed bed 
reactor. Various electrical parameters, including deposited power and plasma current are measured in 
air and argon environments. Visual properties are presented to show how the DBD spreads along the 
dielectric surface or into the packed bed. The effect of being immerged in a packed bed is quantified 
and the potential future prospects of this type of DBD geometry are discussed. 

 
*This material is based upon work supported by the U.S. Air Force Office of Scientific Research under 
Award No. FA9550-18-1-0157. 

 
 
 



 

Unc

Duri
multipoint 
understandin
computed u
moments. W
prior ring 
indices/loca
Cluster ring
additional s
using actual
observing ri
linearity as
curlometer 
quality para
computed fr
measured v
contrary to 
previous stu
conclusions 
structure [3]
is then pres
explicitly 
addressed 
estimates. 
 
 
 
 
 
* Work fund
for Undergr
 
 
References 

[1] Vallat et a
[2] Liemohn 
[3] Zhang et 
[4] Shen et al

certainty in

U

ing its ongo
measureme

ng in numer
using the cu

While this pr
current stu

al times [2]
g current da
sensitivity s
l spacecraft 
ing current s
ssumptions 
output that 

ameters. Fur
rom JxB are
via plasma 
theorized p

udies use th
about rin

][4]. A new 
sented, but w
defined. T
by impro

ded in part th
raduates Prog

al., Annales G
et al., Journa
al., Annales G
l., Journal of 

n Curlome

Timoth

niversity of M

oing mission
ents of the
rous regimes
url of the m
roduced the f
dies throug
]. In this a
ta via curlo
simulations 
position dat
structure, tet

can create
contradict 

rthermore, th
e distinctly d

spectrosco
plasma struc
ese curlome
ng current 
climatology

with severe 
Thus, the 
oved curlo

hrough a gra
gram (Grant

Geophysicae. 
al of Geophys
Geophysicae.
Geophysical 

ter Techni

hy B. Keeble

Michigan, CL

n, the Clust
e space e
s. One such 
magnetic fi
first 3D ring

gh enhanced
analysis, we
metry, and 
for the fir

ta. During th
trahedron sh
e large er
accepted es

he plasma g
different fro
opy, and a
cture. Never
eter outputs 

distributio
y of the ring
limitations 
discrepanci

ometer unc

ant from the 
t Number 16

23, 1849–18
ical Research
 29, 1655-166
Research: Sp

30 

que: Clust

er and Micha

LaSP (tbkeeble

ter II conste
environment,

region is th
eld over a 

g current est
d magnitude
e revisit 
conduct 
rst time 
he orbits 
hape and 
rrors in 
stimated 

gradients 
m those 

are also 
rtheless, 
to draw 
ns and 

g current 
that are 
ies are 
certainty 

National Sc
59248) 

65 (2005). 
h: Space Phys
62 (2011). 

pace Physics. 

F
s
o
c
c
T
p
q
s

ter Ring Cu

ael W. Liemo

e@umich.edu

ellation has
, and dram

he Earth’s rin
spacecraft 

timates [1], i
es and diff

cience Found

sics. 121, 676

119, 2458-24

Figure 1 – Sim
spacecraft p
orientation. 
curlometer r
current and p
The bottom p
parameter. R
quality thresh
still include la

urrent Obs

ohn 

u) 

 provided t
matically a
ng current, w
tetrahedron 

it also drama
fering corre

dation’s Rese

3-6768 (2016

465 (2014). 

mulated curre
position data

The top 
results captu
producing a f
panel shows 

Red dashed li
holds, which 
arge uncertain

ervations*

the first sm
advanced s
which could

instead of 
atically cont

elations with

earch Exper

6). 

ent sheet usin
a without m

panel show
uring the si
false current 
the accepted

ines denote s
demonstrata

nty. 

* 

mall-scale 
scientific 
d now be 
f plasma 
tradicted 
h storm 

rience 

 
ng actual 
modified 
ws the 
imulated 
as well. 

d quality 
standard 
ably can 



 

K

H

(b) D
(

 
Dusty 

high quality
tuned based
Modeling th
insight abou
chamber.  P
local plasma
have either 
discrete co
particles gen
the NPs sca
drag force, t
forces by ion
positive pl
collisions of
charging m
kinetic appro

In this
growth for 
Hybrid Plas
fluid model
algorithms f
Dust Transp
for modelin
various oper
sccm of 99/
will be discu
 
*  Work sup

and Dep
Science 

 
References 
[1] U. Kortsh

Kinetic Mo

S

Himashi And

(a) Departm

Department o
(c) Departmen

low pressur
y nanoparticl
d on the op
his complicat
ut the phys

Particles have
a properties.

a negative
llisions wit
nerally negat
le with parti
the electrosta
ns.  Negative
asma poten
f precursor m
echanisms o
oach to mod
s work, we 

comparison
sma Equipm
, was used 
for nanoparti
port Simulato
ng dust part
rating condit
1 Ar/SiH4) in
ussed. 

pported by A
partment of 

hagen et al. C

odeling of 

Steven Lanh

daraarachchi

ment of Chem

of Electrical &
nt of Mechan

re plasmas c
les (NPs). P
perating con
ted growth p
sics of grow
e variable ch
  Small nan

e or positiv
th charged 
tively charge
icle size and 
atic forces be
e particles ca
ntial, leadin
molecules.  
of NPs in p

deling appeal
discuss effo

n with exp
ent Model (
in this work
icle growth 
or (DTS), a 3
icles.  Tren
tions (base c
n an inductiv

Army Researc
Energy Of

hem. Rev. 11

Nanoparti

ham a, Jordyn

i c, Zhaohan 

mical Enginee

& Computer E
nical Engineer

can be used 
Properties of
nditions for 
process can g
wing NPs 
harges based

noparticles (<
ve charge d

particles, 
e.  Many for
charge, such

etween partic
an become tr
ng to grow
The coupled

plasma natur
ing. 
orts to mode
erimental re
HPEM), a p
k.  Kinetic 
were implem
3D supplem

nds of NP g
ase ≈ 1.5 mT
vely coupled

ch Office MU
ffice of Fu

6, 11061 (20

31 

cle Growth

n Polito a and

Li c, Zichan

ering, Univers
(

Engineering, U
ring, Universi

 

to synthesiz
f NPs can b

the plasma
give valuabl
in a plasm
d on size an
< 1 nm) ma

depending o
while large

rces acting on
h as the flui
cles, and dra
rapped by th
wth through
d growth an
rally make 

el silicon NP
esults.  Th
plasma multi
methods an

mented in th
ent to HPEM
growth unde
Torr, 5 W, 1
d plasma tub

URI Program
usion Energy

16). 

h in Low P

d Mark J. Ku

ng Xiong c an

sity of Michig
(sjlanham@u
University of 
ity of Minnes

ze 
be 
a.  
le 

ma 
nd 
ay 
n 

er 
n 

id 
ag 
he 
gh 
nd 

a 

P 
he 
i-

nd 
he 
M 
er 
5 

be 

m 
gy 

Figure 
capactiv
grow na
and el
particle 

Pressure Pl

Kushner b, 

nd Uwe Kor

gan, Ann Arb
umich.edu) 
f Michigan An
sota, Minneap

1 – An exam
viely couple
anoparticles. 
lectron dens
sizes and pos

lasmas* 

rtshagen c 

bor, MI 

nn Arbor, MI
polis, MN 

mple simulati
d plasma u
a) Plasma p

sity, b-f) 
sitions over ti

I 

 
on of a 

used to 
potential 
average 
ime. 



32 
 

Numerical Investigation of Current Closure in the Plume of a Magnetic Nozzle 
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Propulsive magnetic nozzles are spacecraft propulsion devices in which a plasma expands along 
diverging magnetic field lines, accelerating to produce thrust. Due to their largely wall-less mode of 
operation and the lack of any electrodes, devices using magnetic nozzles should erode at a much lower 
rate than comparable devices. This makes them attractive for a wide variety of mission architectures that 
require long lifetimes or make use of less inert propellants than the noble gases typically used in electric 
propulsion devices. These properties mean that magnetic nozzles are potentially ideal for deep space 
propulsion architectures that incorporate in-situ resource utilization. However, current magnetic nozzle 
designs suffer from abysmal efficiency, typically on the order of 10% or less. While most of this 
inefficiency stems from losses during the generation of the plasma (low “source efficiency”), a 
significant amount comes from inefficient expansion of the plasma (low “nozzle efficiency) [1]. In order 
to optimize nozzle design and maximize nozzle efficiency, it is critical to analyze the plasma’s behavior 
during the expansion. Central to this problem is a good understanding of plasma detachment.  

Plasma detachment is the process by which the plasma streamlines diverge from the magnetic 
field lines. Were the plasma to stay attached, it would follow the closed field lines of the nozzle and 
impact the spacecraft, nullifying thrust and eroding the device. While it experimentally appears that 
detachment occurs in real devices [3][4], parts of this process remain poorly understood. For example, 
while it has been established that the heavier ions detach convergently (inward from the field lines), 
models predict the lighter electrons should detach divergently [1]. This creates a current ambipolarity 
(CA) violation as electron and ions move in opposite directions at different velocities. This leads to 
current contour lines remaining unclosed at the simulation far-field boundary [2]. To explore if and how 
downstream current closure occurs and how it impacts thrust, there is a need to develop models with a 
large experimental domain and which can incorporate a wide range of plasma phenomena. To this end, 
the open source CFD code SU2 was modified to simulate a magnetic nozzle. For the initial treatment, 
ions were treated as a collisionless fluid, and electrons were considered fully magnetized, isothermal, and 
massless. The results provide more evidence of the current closure problem in the magnetic nozzle plume 
and demonstrate its detrimental effect on thrust efficiency. Estimates of the impact of other effects, 
including collisions and electron cooling, on the plasma expansion are also provided. 
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Gas Phase Plasma-Based Approach for Synthesis of Gold Nanoparticles* 

Alborz Izadi and Rebecca Anthony   
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There are different class of applications for gold nanoparticles (AuNPs) due to their interesting 

optoelectronic properties such as tunable optical absorption and surface plasmonic resonance behavior 
(LSPR). However, modern fabrication and stabilization of colloidal AuNPs are well established, 
especially in liquid phase, new synthesis routes can lead to enhanced versatility of applications for 
AuNPs, particularly if the perspective methods allow avoidance of wet chemistry processes and surface-
ligands. Here, we introduce a non-thermal radio frequency plasma‐ based synthesis of AuNPs, using a 
consumable gold wire as grounded electrode[1]. The AuNPs are monodisperse, with an average diameter 
of 4 nm.  Although production yield is low compare to pre-existing methods, including atmospheric 
hotwire method, the narrow size distribution of the AuNPs (regardless of background gas flowrate) and 
the avoidance of solution processing in this method are promising for future syntheses of metal NPs 
based on plasmas. Here, we compared reduced pressure Hotwire method as studied with Boies et al. 
[2]with our new plasma-based approach. Moreover, we try to investigate AuNP formation with other 
frequency power supply and another range of pressure including atmospheric pressure. 

 

* Work supported by the National Science Foundation (NSF) CAREER Grant number (CMMI‐
1651674)  
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A common configuration used in plasma-liquid interactions is that in which a direct current (DC) 
gas discharge is generated between a liquid and a metal. Under this configuration, known as plasma 
electrolysis or glow-discharge electrolysis, the liquid itself functions as a plasma cathode or anode, for a 
positive or negative DC bias, respectively. However, it is not clear exactly how the liquid participates in 
the formation and sustaining of the plasma, including charge transfer at the plasma-liquid interface. This 
is especially true when the liquid is acting as a cathode, and secondary emission from the liquid is 
ostensibly required to sustain the plasma. In this work, we use measurements of discharge voltages to 
understand this process. Voltage measurements for an argon plasma in contact with an aqueous solution 
are conducted in an electrochemical H-cell reactor to test for conditions that would facilitate secondary 
emission from the liquid. We tested the effects of the interfacial chemistry in the secondary emission 
from an aqueous cathode, including pH (from pH = 0 to 14), the hydroxyl radical, the hydrogen atom, the 
solvated electron, and the pre-solvated electron. These experiments had no significant effect on the 
plasma voltage, suggesting that the solvated electron, the pre-solvated electron, and the hydrogen atom 
do not play a crucial role in secondary emission as previously proposed. 
 
* This work was supported by the U.S. Army Research Office under Award Number W911NF-17-1-
0119. 
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 Recent experimental validation of the novel “ion emission model” has paved the way for a new 
class of space missions [1,2]. Specifically, missions which require significant electron beam emission in 
regions with a tenuous (low density) ambient plasma were previously not possible. This is because the 
electron beam emission current could not be realistically compensated by electron collection from the 
tenuous ambient plasma. This current imbalance led to significant increases in the spacecraft potential 
until ultimately the electron beam was electrostatically pulled back to the spacecraft. According to the 
ion emission model, the electron beam current can be compensated by equivalent ion emission from the 
surface of a quasi-neutral plasma contactor according to the space-charge limit. While the fundamentals 
of the ion emission model have been validated, there remain physical effects which require further study. 
 One major concern is the geomagnetic field’s effect on the ion emission process, as it defines the 
expansion and geometry of the quasi-neutral plasma contactor. Experiments were performed to better 
understand this process and how the ion emission current scales with ambient magnetic field strength. 
Plasma parameters were scaled to study this effect in an Earth-based vacuum chamber using a hollow 
cathode plasma contactor enclosed in a custom solenoid capable of producing a uniform magnetic field 
of 10mT. Ion emission current was recorded as the magnetic field strength and hollow cathode potential 
were varied parametrically. A magnetic field mapping of the custom solenoid, plots of ion emission 
current versus magnetic field strength and hollow cathode potential, new physical insights, and 
implications for future space missions are discussed. 
 
* Work supported by the Directed Research and Development program at Los Alamos National 
Laboratory 
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Accelerating Warm Dense Matter Simulations to Elucidate Diffusive Mixing Processes 
Using Machine Learning* 

Lucas J. Stanek a,b , Raymond C. Clay III b and Michael S. Murillo a 

(a) Department of Computational Mathematics, Science, and Engineering, Michigan State University, East 
Lansing, MI (staneklu@msu.edu, murillom@msu.edu) 

(b) High Energy-Density Physics Theory Organization, Sandia National Laboratories, Albuquerque, NM 
(rclay@sandia.gov) 

 
Inertial confinement fusion (ICF) compresses fuel to potentially generate unlimited, clean energy. 

In the presence of energy loss mechanisms such as ablator-fuel mixing, a net gain in energy remains to 
be achieved [1]. A detailed microscopic model of interfacial mixing is computationally intractable 
because of the expense of computing on-the-fly force fields. Pair potential molecular dynamics (PP-MD) 
offers a computationally efficient approach but with questionable accuracy [2,3]. We explore learning 
accurate pair potentials by using the forces produced by Kohn Sham density functional theory. These 
potentials are obtained by optimizing, using simulated annealing and a genetic algorithm, a least squares 
loss function for the forces and the results are compared to existing pair potentials. We find that many 
extant pair potentials lack certain features apparent in our learned potentials, such as oscillatory behavior. 
Current efforts are exploring the implications of these potentials on transport phenomena. 

 
* This work is supported by the Air Force Office of Scientific Research (AFSOR). Sandia National 
Laboratories is a multimission laboratory managed and operated by National Technology & Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 
SAND2019-9862 PE 
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Customization of a Plasma Source for LIF Dip Measurements 

Jenny R. Smith, John E. Foster and Chris Durot 

Department of Nuclear Engineering & Radiological Sciences, University of Michigan 
(jruths@umich.edu) 

 
Understanding gas phase chemistry is necessary in several applications, but it also offers 

significant challenges.  We have developed an experiment to use laser-induced fluorescence (LIF) dip 
spectroscopy to obtain insight into the changing gas composition in an Argon plasma, to later be 
applied to an air plasma.  Two lasers are used, one to populate the fluorescing state and one to 
depopulate the plasma to the Rydberg states, and both are directed into the plasma through a laser 
access flange.  The electric field is measured by analyzing the “dip” in the fluorescence signal [1]. This 
technique can detect a low electric field magnitude because Rydberg states are highly sensitive to the 
Stark effect.  The plasma source in this experiment was designed to ensure different species 
concentrations are captured.  The plasma source used in this experiment will combine a DC discharge 
with a hollow cathode plasma source to supply metastable species. 
 
* Work supported by Naval Research Laboratories 
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Characterizing the Spatial Resolution of Scintillators for Imaging Applications of Laser-
Driven Proton Beams * 

Hongmei Tang a, Brandon Russell a, Anatoly Maksimchuk a, Paul T. Campbell a, Mario J.E. Manuel b 
and Louise Willingale a 

(a) University of Michigan (tanghm@umich.edu) 
(b) General Atomics (manuelm@fusion.gat.com) 

 
Laser driven proton beams are widely used in visualizing the electromagnetic fields in high-energy-

density physics experiments. However, typical detectors for proton imaging, i.e. radiochromic film 
(RCF) and plastic-track (CR39) detectors, are single-use and unable to meet the needs of higher 
repetition-rate facilities. Scintillators are a viable substitute their reusability and prompt, easy data 
acquisition by imaging the emitted optical signal onto a CCD camera are both advantageous features for 
a rep-rated experiment. We perform experiments using the T-cubed laser system at the University of 
Michigan to diagnose the intrinsic spatial resolution of the scintillators based on resolution grids imprints 
on the proton beam. The signal-to-noise from the laser-driven experiment, where there is significant 
relativistic electron and x-ray flux, is compared with Cyclotron based data [1]. A configuration where the 
magnified imprint of a mesh in the proton beam is used to demonstrate that scintillators are capable of 
comparable overall spatial resolution to RCF for applications in proton beam diagnosis and radiography 
applications.  
 
* This work was supported by DOE Office of Science, Fusion Energy Sciences under Contract No. DE-
SC0019076: the LaserNetUS initiative at the Center for Ultrafast Optical Science. 
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Shock Injection Producing Narrow Energy Spread, GeV Electron Beams from a Laser 
Wakefield Accelerator* 

J.A. Cardarelli a, M.J.V. Streeter b, C. Colgan b, D. Hollatz c, A. Alejo d, C. Arran e, C.D. Bairde,f,  
M.D. Balcazar a, T.G. Blackburn g, N. Bourgeois f, J.M. Cole b, E. Gerstmayr b, Harshc, Y. Katzir e, B. 

Kettle b, E. Los b, M. Marklund g, C.D. Murphy e, Z. Najmudin b, P.P. Rajeev f, C.P. Ridgers e, C. 
Roedel c, F. Salgado c, G.M. Samarin d, G. Sarri d, D.R. Symes f, A.G.R. Thomas a, C.I.D. Underwood 

e, M. Zepf c, and S.P.D. Mangles b 

(a) University of Michigan/Gérard Mourou CUOS (jcardar@umich.edu) 
(b) Imperial College London (m.streeter09@imperial.ac.uk) 

(c) Helmholtz Institute Jena (dominik.hollatz@uni-jena.de) 
(d)  The Queens University of Belfast (aaron.alejo@physics.ox.ac.uk)  

(e)  University of York (christopher.arran@york.ac.uk ) 
(f)  RAL Central Laser Facility (chris.baird@stfc.ac.uk ) 

(g) Chalmers University of Technology (mattias.marklund@chalmers.se)  
 

The parameters of electron beams produced by a laser wakefield accelerator are in large part 
determined by the dominant injection mechanism. In shock injection the driving laser pulse crosses 
abruptly from a region of high plasma density to one of lower density. The sudden change in the plasma 
wavelength leads to injection of electrons. Shock injection has been successfully employed on lower 
power (< 100 TW) systems where it produces tunable narrow energy spread electron beams.1 Here we 
present an investigation of shock injection on the higher power Gemini laser system (> 200 TW). In this 
case shock injection can produce high energy (> 1 GeV), narrow energy spread (≤ 5%) electron beams. 
The injection here is found to be sensitive to the position of shock front within the accelerator, in contrast 
to previous results at lower power. 
 
* Work supported by the National Science Foundation (grant 1804463) 
 
References 
[1] A. Buck, J. Wenz, J. Xu, et. al., Phys. Rev. Letters 110, 185006 (2013). 



 

Two-sur

Depa

 
Multip

field, which
exponential 
and microw
susceptibilit
electric field
Vaughan’s m
electron yiel
with random
preassigned 
obtain the m
plane (V is
frequency o
the two surf
range of m
simulation. 
in the suscep
first three o
the number 
However, t
different fro
presence of 

 
* Work su
FA9550-18-
 
 
References 
[1] Special se
[2] R. A. Kis
[3] P. Zhang,
[4] A. Iqbal, 
[5] A. Iqbal, 
[6] J. R. M .V

rface Mult

artment of Ele

pactor effect
h results in s

growth of c
wave   system

y in a gap
d between tw
model [6] i
ld (SEY) for
m initial e

function o
multipactor su
s the micro
f rf field, an

faces), we sca
magnitude of

Our results c
ptibility    di
dd-order mo
of half cycl

the suscepti
om those of 
the mixed m

upported by
-1-0062. 

essions on Mu
hek, Y. Y. La
, Y. Y. Lau, M
J. P. Verbonc
J. Verboncoe
Vaughan, "M

tipactor Su

ectrical and C
(hu

t is a nonline
econdary ele

charge. This 
ms [1]. We 
p with two-c
wo parallel 
s used to ob
r secondary 
nergy and 
f distributio
usceptibility 
owave input
nd D is the g
an the averag
f the input 
can predict t
iagram (Fig.
odes (N=1, 3
les of the fu
ibility boun
f analytical s

multipactor m

y AFOSR 

ultipactor, I a
au, L. K. Ang
M. Franzi and
coeur, P. Zhan
eur, P. Zhang,
ultipactor", IE

usceptibility
Carlo 

Zizhuo Hua

Computer Eng
uangziz@egr

ear phenome
ectron emiss
effect may 
apply Monte
carrier-frequ
metallic ele
btain the se
emission pr
angle follo

on [2]. In o
diagram in t
t voltage, f
ap distance b
ge SEY for a
voltage usi

three separat
 1), represen
3 and 5, whe
undamental r
ndaries are 
solution, due

mode. 

MURI Gra

and II, ICOPS
g, A. Valfells,
d R. M. Gilgen
ng, Phys. Plas
, Phys. Plasm
EEE Trans. E

44 

y with Two
Simulatio

ang and Peng

gineering, Mic
r.msu.edu, pz

enon when fr
sion from m
damage the 
e Carlo (MC

uency rf 
ectrodes. 
econdary 
rocesses, 
owing a 
order to 
the V-fd 
f is the 
between 
a certain 
ing MC 
te bands 
nting the 
ere N is 
rf field). 
slightly 

e to the 

ant No. 

S, Denver, CO
 and R. M. G
nbach, Phys. 
smas, 25, 043

mas 26, 024503
Electron Devic

F
i
s
f
r
s
c
r

o Carrier F
on* 

g Zhang 

chigan State U
@egr.msu.ed

ree electrons
metallic and d

rf devices s
C) simulation

O, June 2018.
Gilgenbach, Ph

Plasmas, 18, 
3501 (2018).
3 (2019). 
ces 35, 1172 

Figure 1 – M
in V-fd plan
simulation. R
from analytic
respectively.
strength, freq
carrier to th
respectively.

Frequencie

University, E
du) 

s are accelera
dielectric sur
such as satel
n [2-5] to st

hys. Plasmas 
053508 (201

(1988). 

Multipactor su
ne. Dot plo
Red, blue an
cal solutions 

𝛼, 𝛽, and 
quency, and p
he fundame

es Using M

East Lansing, 

ated by an rf
rfaces, leadin
llite commun
tudy the mu

5, 2120 (199
1). 

usceptibility d
t is from t

nd green cur
for N = 1, 3
𝛾 are the 

phase of the 
ntal carrier 

Monte 

USA 

f electric 
ng to an 
nications 
ultipactor     

8). 

 
diagram 
the MC 
rves are 
3, and 5 
relative 
second 
signal, 



 

(
(b) D

 Z-pi
Taylor (MR
the formatio
energy dens
order of ~1
contrast to 
crossing of 
a predeterm
[1, 2]. When
X-ray radia
pinch.  Th
applications

To a
Accelerator 
Linear Tran
is being dev
or hybrid X
experiments
pinch micro
be to create
spectroscopi
 
*This work 
Cooperative
Grant DE-SC
 
References 
[1] S. A. Piku
[2] S. A. Piku

G. V. Dow

a) Applied Ph
Dept. of Nucle

nch implosi
RT) and m=0
on of multip
sity (HED) p
1 Gbar for c

a typical z
2 or more w

mined locatio
n the micro-p
tion is emit

his X-ray so
s.  
llow for the 

for Induc
sformer Driv

veloped. Thi
X-pinches, 

s focusing on
-pinches. Th

e an X-ray r
ic methods f

was support
e Agreement 
C0020239. 

uz, T. A. Shel
uz, T. A. Shel

X-Pinch

whan a, J. M

hysics Progra
ear Engineerin

ons are inhe
0 “sausage” 
ple “micro-p

physics as th
currents on 
z-pinch, an 

wires, genera
on in space (
pinch forms
ted from the
ource is of

study of mic
ctive Z-pinc
ver (LTD), n
s hardware w
in addition 

n both the ph
he present foc
radiography 
for characteri

ted in part b
DE-NA000

lkovenko, and
lkovenko, and

h Diagnosti

M. Woolstrum

am, University
ng and Radio

erently unsta
instabilities
pinch” regio
ey compress
the order o
X-pinch, f

ates a single
(i.e., where t
, an intense,
e central “h
ften used fo

cro-pinches o
ch Experim
new X-pinch
will host sev

to a main
hysics and ap
cus using thi
diagnostic f

izing micro-p

y the NNSA
3764 and in 

d D. A. Hamm
d D. A. Hamm

45 

ics for the 

m b, N. M. Jo

y of Michigan
logical Scien

able due mai
 (where m i
ons. These 
s to very sma
of ~0.1 MA.
formed by 
micro-pinch

the wires cro
sub-ns burs

hot spot” of 
for radiograp

on the Michi
ments (MAIZ
h load hardw
veral multi-w
n load, to 
pplications of
is hardware w
for imaging 
pinch physic

A Stewardshi
part by the 

mer, Plasma P
mer, Plasma P

MAIZE L

ordan b, and 

n, Ann Arbor
nces, Universi

inly to a com
is the azimu
micro-pinch
all radii (~1 
. In 
the 

h at 
oss) 
st of 

the 
phy 

igan 
ZE) 

ware 
wire 
run 

f X-
will 
the main lo

cs. 

ip Sciences A
DOE Early 

Physics Repo
Physics Repo

Figur
pinch
radiog

LTD* 

R. D. McBr

r (dowhag@u
ity of Michiga

mbination of
uthal mode n
hes are idea
µm) leading

oad on MA

Academic P
Career Rese

orts. 41, 291 (
orts. 41, 445 (

re 1 – Diagra
h hardware 
graphy on the

ride a,b 

umich.edu) 
an, Ann Arbo

f magneto-R
number) resu
al for studyi
g to pressure

AIZE and to 

rograms und
earch Progra

2015). 
2015). 

am of a poss
design for 

e MAIZE LTD

or 

Rayleigh-
ulting in 
ing high 
es on the 

develop 

der DOE 
am under 

 
ible X-

X-ray 
D.   



 

Sha

(a) C

(
 

Wav
magnetic fi
relationship
wave called
because inc
growth, and
investigate 
satellite obs
observations
observations
of the m
waves obser
ion energiz
find harmon
in the m
waves that m
harmonics, 
indicates 
magnetoson
transfer 
oxygen io
conclude 
magnetoson
able to ene
ions in 
magnetosph
the w
interaction 
important 
modifying s
dynamics.   
 
References 
[1] D. Summ
[2] E.A. Kron
[3] X. Yu, Z.
Geophys. Re
[4] Z. Yuan, 
1250 (2018).

Ex

annon C. Hi

Climate and S

(c) Univ
d) Goddard P

ve-particle in
ield in near

between ox
d a magnetos
creased oxyg
d minimum 
oxygen ion 
servations s
s of magne
s of O+ ion 
magnetosoni
rved with O
zation.  W
nic structure
magnetosoni
match oxyge

whic
tha

nic waves ca
energy t

ons.  W
tha

nic waves ar
rgize oxyge
the inner

here and thu
wave-particl

plays a
role i

space plasm

mers, B. Ni, an
nberg, M. Ash
 Yuan, D. Wa
s. Lett., 42, 1
X.Yu, , S. Hu
 

xample of 

Oxyge

ll a, N. Buzu

pace Science

(b) NAS
versity of Mar
Planetary Hel

nteractions a
-Earth spac
xygen ions i
sonic wave. 
gen content 

resonant en
behavior w

how that m
etosonic wav

energization
ic 

O+ 
We 

es 
ic 
en 
ch 
at 
an 
to 

We 
at 
re 
en 
r-
us 
le 
an 
in 

ma 

nd N.P. Mered
hour-Abdalla
ang, H. Li, S.
312–1317 (20

uang, Z. Qiao

 
Figure 
inner-m
region o

wave-parti

en Ions and

ulukova b,c, S

s and Engine
(shanh

SA Goddard S
ryland, Colleg
liophysics Ins

are an impo
e (the inner
in the inner
Oxygen ion
can affect 

nergy. [1] [
when observ
magnetosonic
ves energizi
n by magnet

dith, J. Geoph
a, I. Dandoura
. Huang, Z. W
015).  

o, F. Yao, and

1 - Wave-par
magnetosphere
of interest to t

46 

icle interac

d Magneto

S. Boardsen b

ering, Univer
ill@umich.ed

Space Flight C
ge Park, Astro
stitute, Univer

ortant compo
r-magnetosp
-magnetosph

ns are an imp
the wave di
2] [3] In th

ved simultan
c waves are
ing O+ ion
tosonic wav

hys. Res. 112(
as, et al., Spac

Wang, Q. Zhen

d H. O. Funste

rticle interacti
e. The figure
this study.  

ctions in G

osonic Wav
b,d, M.-C. Fo

rsity of Michi
du) 
Center, MD, U
onomy Depar
rsity of Mary

onent of ene
phere). This 
here and a t
portant com
ispersion in
his study, w
neously with
e able to en

ns remain el
ves. We also

(A4), A04206
ce Science Re
ng, M. Zhou, 

en, J. Geophy

ions play a la
e above show

Geospace:  

ves  

ok b, and T. P

igan, Ann Arb

USA 
rtment, MD, U
yland, Baltimo

ergy transfe
study aims

type of elec
mponent to sp
n the backgr
we use satel
h magnetoso
nergize H+ 
lusive. [4] W

o analyze the

6 (2007). 
eview, 184(1-
C. A. Kletzin

ys. Res. Space

arge role in en
ws the wave

Pulkkinen a

bor, MI, USA

USA 
ore, MD, USA

er inside the
s to underst
ctromagnetic
pace plasma
round plasm
llite observa
onic waves.
and He+ io

We report 
e harmonic s

-4), 173–235 
ng, and J. R. W

e Physics 123

nergy transfe
e-particle inte

A 

A 

e Earth’s 
tand the 
c plasma 
a physics 

ma, wave 
ations to 
. Recent 
ons, but 
the first 
structure 

(2014). 
Wygant, 

3, 1242–

 

er in the 
eraction 



 

Particle Em

(a) Plasma S

 
Self-o

discharge re
underlying s
particle emi
1(a). These 
form of spla
including 
precipitation
were exam
electron m
Energy 
spectroscopy

Recen
molten p
theoretical 
from the 
Furthermore
analysis wa
trajectories 
order to an
force and th
particle dur
insight into 
potential me
examined th
figure 1b). S
optical emis
attachment a
region. This
into the unde
 
* Work supp
 
References 
[1] T. Verrey
[2] N. Shirai,
[3] N. Shirai,

mission fro

Y

Science and T

(b) Departm

rganization 
epresents bo
self-organiza
ission from t
particles ha

ats suggesting
evidence 

n. These res
mined using 
microscope 

dispersive
y (EDX).   

ntly, the siz
article dr
estimated b
size of im

e, high-spe
as used to 

of emitted 
nalyze both 
e drag exper
ring flight. 
mechanisms
echanism dr

he local temp
Simultaneous
ssion spectro
and electric 
 effort thus p
erlying proce

ported by U.

ycken and P. B
, S. Uchida an
, S. Ibuka and

om an Ano

Yao E. Kova

Technology L
Michigan, U

ment of Appli

patterns obs
oth a myste
ation of plasm
the liquid an

ave been col
g that they a

of nano
sulting splat

a scannin
(SEM) an

e X-ra

ze range o
oplets wa

by convertin
mpact splat
eed camer
map the 2D

particles i
the emissio

rienced by th
This yield

s of emission
riving the em
perature of th
sly, the local
oscopy (OE
field have n

provides insi
esses driving

S. Departme

Bruggeman, J
nd F. Tochiku
d S. Ishii, App

ode Liquid 
DC

ach a, Maria 

aboratory, Nu
USA (yaok@
ied Physics, U

served on an
erious and b
mas in this c
node under 
lected in flig

are melton. T
o-
ts 

ng 
nd 
ay 

of 
as 
ng 
s. 
ra 
D 
in 
on 
he 
ds 
n. A thermal
mission of p
he liquid wat
l electric fiel
S) diagnosti
not been cha
ight not only
g the self-org

ent of Energy

J. Appl. Phys.
ubo, Plasma S
pl. Phys. Expr

Figure 
high-spe
below 
organize

47 

Surface of
C Glow* 
C. Garcia b

uclear Engine
@umich.edu, je
University of 

node liquid 
beautiful ph
context is stil
self-organiza
ght using w

The splats we

l effect such
particles tha
ter at the em
ld near to the
ics. To date
aracterized o
into the phy

ganization fo

y with an aw

. 105, 083312
Source Sci. Te
ress 2, 03600

1 – (a) Partic
eed camera a
the liquid su
ed dots patter

f Electroly

and John E.

eering and Ra
efoster@umic
Cordoba, Spa

surfaces in 
hysics pheno
ll poorly und
ation conditi

witness plates
ere observed

h as localized
at may be f

mission zone j
e emission su
e, both the l
owing to the
ysics of parti
ormation itse

ward DE-SC0

2 (2009). 
echnol. 23, 05

01 (2009). 

cle emissions
and (b) Therm
urface where
rn. 

yte in Atmo

. Foster a 

adiological Sc
ch.edu) 
ain (fa1gamam

atmospheric
omenon [1-3
derstood. In 
ion has been
s. The partic
d to have a gr

d heating an
formed in th
just below th
urface was in
local temper
e challenges 
cle emission
lf.  

00-18058. 

54010 (2014)

s captured at
mal gradient
e directly u

ospheric Pr

ciences, Univ

m@uco.es) 

c pressure D
3]. The me
this study, lu

n observed i
cle impacts h
reat deal of s

d evaporatio
he liquids. H
he surface (s
nvestigated b
rature at the
in interroga

n, but also po

). 

t 1.5 ms by u
s assessed at
nderneath th

ressure 

ersity of 

DC glow 
echanism 
uminous 
in figure 
have the 
structure 

on is one 
Here we 
shown in 
by using 

e plasma 
ating this 
otentially 

 
using a 
t 2 mm 
he self-



 

 
Globa

behavior an
further helps
framework 
spherical ap
compute ele
EEDF, the 
dynamic sy
complexity. 
preserve th
maintaining 

Using 
high pressur
the EEDF 
plasma para
electron den
and assumin
benchmarke
two-term a
evaluating E
with BOLS
good agreem
computation
EEDFs: 61.
might be ca
codes (featu

One c
the KGMf c
only from E
COMSOL a
 
* Work supp
 
References 
[1] G. M. Par
[2] A. Luque
[3] G. J. M. H
[4] J. Stephen
[5] S. K. Nam

Benchm
EED

M

al (volume-a
d showing t
s identify the
(KGMf) wa

pproximation
ectron energ
KGMf enab

ystems at 
Adaptive E

he high effi
the accuracy
the low-tem

re, we comp
evaluation f
ameters, e.g
nsity (ne). Fo
ng Ohmic h

ed with ZDPl
approximatio
EEDF: the K
IG+. The re
ment. Furthe
nal performan
3% in BOL
aused by dif

ure-full-code 
ritical differe
can include t

EEDF. For th
and PIC were

ported by De

rsey, Ph.D. Th
e, https://pypi.
Hagelaar and 
ns, J. Phys. D
m and J. P. Ve

marking th
DF Evaluat

Janez Kre

Michigan State

averaged) m
the ability to
e key reactio

as coupled w
n) and Multi
gy distributio
bles fidelity
the cost o

EEDF evalu
iciency of 
y of the solut
mperature ar
pared differe
frequency d
g.  reduced
or case with 
heating of e
lasKin. Both

on Boltzman
KGMf with 
esults from 
er efforts ar
nce. Detailed
OS (KGMf)
fferent comp
approach in 
ence betwee
the electron 

he case of RF
e also compa

epartment of 

hesis, Michig
.python.org/p
L. C. Pitchfo

D: Appl. Phys.
erboncoeur, C

e Kinetic G
tions in Lo

k, Yangyang

e University (

models prese
o evaluate th
ons for spatia
with a Boltz
iBolt [4] (m
on function 

y of the res
of higher c
uations are 
the global 
tions.  
rgon plasma
nt methods 

depending on
d electric fi

constant ab
electrons, the
h codes were
nn equation
BOLOS an
compared c

re also made
d profiling sh
) and 90.2%
putational ap
the KGMf v
n the KGMf
energy equa

F discharge i
ared [5].  

f Energy Plas

gan State Univ
pypi/bolos (20
ord, Plasma So
. 51, 125203 (
Comput. Phys

48 

Global Mo
w-tempera

g Fu and Joh

({krek, fuyan

ent valuable
he importanc
al-dependent

zmann equat
multi-term sp

(EEDF). B
sults even fo
computation
imperative t
model whi

a chemistry 
of controllin
n changes o
ield (E/N) o
bsorbed powe
e KGMf wa

e coupled wit
n solvers fo
nd ZDPlasKi
codes show
e to observe
how that cod

% in BOLSIG
pproaches (P
versus minim
f and ZDPlas
ation to com
in argon, bre

sma Science 

versity (2017
004). 
ources Sci. Te
(2018).  
s. Commun. 1

odel framew
ature Argo

hn P. Verbon

ngya, johnv}@

e tools in p
ce of individ
nt simulations
tion solver, 
pherical appr
By capturing
for 
nal 
to 
ile 

at 
ng 
of 
or 
er 
as 
th 

for 
in 
a 

e difference
des spend the
G+ (ZDPlasK
Python vs. F

malistic appro
sKin is the tr

mpute Te, wh
eakdown tim

Center gran

). 

echnol. 14, 72

180, 628 (200

Figure 
the num
selected
(reduce

work (KGM
n Plasmas

ncoeur 

@msu.edu) 

predicting m
dual reaction
s [1]. The K
BOLOS [2, 
roximation),

g the tempor

es in code im
e majority o
Kin). The pe
FORTRAN)
oach in ZDP
treatment of 
here ZDPlas

mes from the 

nt DE-SC000

22 (2005).  

09). 

1 – The simu
mber of EEDF
d values of co
ed electric fiel

Mf):  
* 

macroscopic 
ns in plasma
Kinetic Globa

3] (using t
, to self-con
ral evolution

mplementati
f time evalua
erformance d
) and capabi
PlasKin).  

the energy e
Kin can com
KGMf, ZD

01939. 

ulation run tim
F evaluations
ontrolling par
ld E/N). 

plasma 
s, which 
al Model 
two-term 
nsistently 
n of the 

ions and 
ating the 
disparity 
ilities of 

equation: 
mpute Te 
PlasKin, 

 
me and 

s versus 
rameter 



49 
 

Simulations of Photoionization Fronts on the Z-machine Using a Well-characterized 
Radiation Flux Input* 

 
H. J. LeFevre a, W. J. Gray a, R. C. Mancini b, G. P. Loisel c, J. S. Davis a, P. A. Keiter d,  

C. C. Kuranz a, R P. Drake a 

 
(a) University of Michigan (hjlefe@umich.edu) 

(b) University of Nevada Reno 
(c) Sandia National Laboratory 

(d) Los Alamos National Laboratory 
 

In the early universe at the end of the dark ages, the first galaxies and stars started forming. 
This introduced a sustained ionizing photon flux into the intergalactic medium (IGN) in 
photoionization (PI) fronts, re-ionizing the universe. PI fronts are heat fronts where PI dominates the 
energy deposition at the interface. 

The Z-machine at Sandia is a very bright source of x-rays, emitting over 1 MJ of soft x-ray 
energy. This is an attractive platform to make measurements of photoionization fronts. We discuss a 
study performed with the Helios-CR code for a N gas cell for a potential Z experiment. The radiation-
hydrodynamic simulations included inline, self-consistent non-equilibrium atomic physics and photon-
energy resolved radiation transport. They were driven with the time-history of a spectrally resolved x-
ray flux obtained from VISRAD view factor modeling of the Z radiation environment constrained with 
power and monochromatic image measurements of the z-pinch. A parameter study over gas pressure 
and atomic model complexity explores the front propagation with Z as a driving source. A resolution 
study shows the importance of capturing the photon mean free path in PI front calculations. 
 

*This work is funded by the U.S. DoE NNSA Center of Excellence under grant number DE-
NA0003869. 
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High-repetition Neutron Generation from Ultrashort Laser Pulse Irradiation of 
 Electrohydrodynamically Extracted Deuterated Microdroplets* 

 

N. J. Peskosky, J. A. Nees, A. G. R. Thomas and K. Krushelnick 

Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 
48109 (njpeskos@umich.edu) 

 

We report initial findings of laser-driven fusion neutron yield from the interaction of 
regeneratively amplified several-mJ, 35 fs laser pulses at 1/2 kHz with spatio-temporally resolved 
microdroplets from a novel electrohydrodynamic jet nozzle.  Femtoliter-scale deuterated droplet targets 
are produced via pulsed high-voltage electrostatic extraction from a 50 μm I.D. / 120 μm O.D. stainless 
steel capillary.  High intensity laser pulses (of order 1019 W/cm2) are focused under vacuum and collide 
with the microdroplets to create energetic deuterons via the Target Normal Sheath Acceleration (TNSA) 
mechanism. 2.45 MeV neutron pulses are generated via the d(d,n)3He fusion half-reaction. Neutron flux 
is measured via zero gamma sensitivity calibrated bubble detectors while neutron spectrum is quantified 
with plastic scintillators in a pulse-shape discrimination neutron time-of-flight (ToF) setup.  To our 
knowledge, this experiment is the first to demonstrate micron-scale monodisperse droplet generation in 
vacuum utilizing pulsed electrohydrodynamic jetting. 
 

* This material is based upon work supported by the Air Force Office of Scientific Research under 
Award No. FA9550-16-1-0121. 
 

 

 

Time-resolved Characterization of a Free Plasma Jet Formed using a Piezoelectric 
Transformer * 

Jinyu Yang a, Seong-Kyun Im b and David B. Go a, c 

 

(a) Department of Aerospace and Mechanical Engineering, University of Notre Dame, USA (jyang13@nd.edu) 
(b) School of Mechanical Engineering, Korea University, Republic of Korea (sim3@korea.ac.kr) 

(c) Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA (dgo@nd.edu) 
 

The time-resolved characteristics of plasma generated by a piezoelectric transformer (PT) have 
been investigated. A PT is a non-centrosymmetric crystal that converts low-voltage AC input (e.g., a 
high frequency sinusoidal wave) to high-voltage AC output through an electro-mechanically coupled 
process. The high voltage gain can be several orders of magnitude, such that a free atmospheric-
pressure plasma jet (APPJ) can be formed off the surface of the PT. PTs are attractive for non-
equilibrium plasma generation because of their simple operation and low power consumption. In this 
work, the temporal evolution of the PT-driven plasma was visualized by using an intensified CCD 
camera. For time-resolved plasma visualization, one period of the input voltage cycle (~14.8 µs) has 
been separated into 60 phases with a time interval of 250 ns, and APPJ images are taken for each 
phase. Results visually demonstrate the plasma jet formation within one period. Notably, the plasma 
formation is a discrete process, appearing at a fixed phase of the sinusoidal input, and the strongest 
plasma jet appears at the end of the positive cycle. Simultaneous measurements of the current, 
however, show that the discharge current spikes appear statistically about a microsecond earlier than 
the strongest plasma jet images, which indicates that the plasma produces a strong afterglow. 

* This work is based on support from the National Science Foundation under Award No. PHY-1804091. 
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Validation of PERSEUS and Implementing Ionization Energy Models in PERSEUS 

J. M. Woolstrum a, D. A. Yager-Elorriaga b, P. C. Campbell a, N. M. Jordan a, C. E. Seyler c and  

R.D. McBride a 

(a) University of Michigan (jeffwool@umich.edu) 
(b) Sandia National Laboratories 

(c) Cornell University 
 

Ultrathin foil liners, with thicknesses of 400 nm, are used in university-scale Z-pinch experiments 
(~1 MA) to study physics relevant to inertial confinement fusion efforts on larger-scale facilities (e.g. the 
MagLIF efforts on the 25 MA Z facility at Sandia National Laboratories). We demonstrate the ability of 
the 3D MHD simulation code PERSEUS [1] to accurately model the implosions of ultrathin liners by 
comparing general implosion trends and detailed plasma structures in simulation and experiment. In 
university-scale experiments [2], ultrathin foils have used a central support rod to maintain structural 
integrity prior to implosion, and we have now used PERSEUS to study these experiments in detail. The 
results suggest that it is the support rod which enables the helical structures to persist beyond stagnation. 
In addition, we report on new efforts to include more robust material ionization models in PERSEUS to 
enhance the code’s simulation capabilities. 
 
* Supported by NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement 
DE-NA0003764. 
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Experiments to Understand the Interaction of Stellar Radiation with Molecular Clouds* 

 

Robert VanDervort a, J. Davis a, M. Trantham a, S. Klein a, P. A. Keiter b, R. P. Drake a and C. Kuranz a 

(a) University of Michigan (dervort@umich.edu) 
(b) Los Alamos National Laboratory 

 
Enhanced star formation triggered by local hot and massive stars is an astrophysical problem of 

interest. Radiation from the local stars acts to either compress or blow apart gas clumps in the 
interstellar media. In the optically thick limit (short radiation mean free path), radiation is absorbed 
near the clump edge and compresses the clump. In the optically thin limit (long radiation mean free 
path), the radiation is absorbed throughout, acting to heat the clump. This heating explodes the gas 
clump. Careful selection of parameters, such as material density or source temperature, allows the 
experimental platform to access different hydrodynamic regimes. A stellar radiation source is 
mimicked by a laser-irradiated, thin, gold foil, providing a source of thermal x-rays around 80-eV. The 
gas clump is mimicked by low-density CRF foam. We plan to show preliminary results, in the 
optically thick limit, where the shock is radiographed at various times. 
 
* This work is funded by the U.S. DOE NNSA Center of Excellence under grant number DE-
NA0003869, and the NLUF Program, grant number DE-NA0002719, and through the LLE, University 
of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0003856. This work is 
funded by the LLNL under subcontract B614207. 
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