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•  What are the Plasma Kinetic Theory Equations we need to 
solve? VP, VM, VLFP, LGBT, …, all the way to MD.	



•  What are the physical states we wish to simulate? 
Nonlinear, Non-Stationary, Self-Organized, Asymptotic 
States of plasma and their interactions with each other and 
with classical, small-amplitude-excited, resonant waves 
such as EPW and IAW. 	



•  How about their interactions? We also wish to study their 
stimulated scattering states, when, for example, crossing 
laser beams drive them and are amplified off these 
structures at the same time.  Parametric Instabilities such as 
SRS, SBS, SKEENS, … Rich physics, multiscale, cool!	
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•  Klimontovich equation: Conservation of Densities in Phase Space of a 
finite number of classical point particles belonging to a set of species (qs, 
ms) meets self-consistent microscopic electric and magnetic fields via 
Maxwell’s equations. Σi δ(x-xi) δ(v-vi).	
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Can We Separate Out the Smooth Part of the 
Distribution Function from the Fluctuating?���
This Is How You Get Plasma Kinetic Equations	


	



∂
∂t

+ v •∇x +
qs
ms

E + v
c
×B⎛

⎝⎜
⎞
⎠⎟ •∇v

⎡

⎣
⎢

⎤

⎦
⎥ fs = − qs

ms

δE + v
c
×δB⎛

⎝⎜
⎞
⎠⎟ •∇vδNs

The right hand side is less and less significant the more particles you have in a Debye sphere.	


Collective effects dominate when the plasma parameter is large:                      , where 	

Λ = nλD

3 >>1 λD = T
4π nq2

In the limit of RHS = 0 we have the Vlasov or collisionless Boltzmann equation	


description of the collective effects in a plasma. 	



Ns = fs +δNs

Em = E +δE
Bm = B +δB

How much of the fluctuating density and fields on the RHS do we want to keep? BBGKY	


	


Lenard-Guernsey-Balescu theory (LGBT) or Fokker-Planck (Fo-Pla)?	


Or you can get tangled up in knots over the Boltzmann collisional operator: Knots in Boltz. 	
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Lenard-Guernsey-Balescu Theory: Two-Point ���
Correlation Functions Are In (correlations assumed 
small), Three Particle Collisions Are Completely Out.	


f2 x1,v1,x2,v2, t( ) = f1 1,v1, t( ) f1 1,v1, t( )+ g x1,v1,x2,v2, t( )

Ignoring spatial inhomogeneity, working in Fourier space, LGBT reads:	



Df
Dt

= − 8π
4n

m2 ∇v • dk∫ dv 'kk • ϕ 2 k( )
ε k,k • v( ) 2

δ k • v − v '( )⎡⎣ ⎤⎦ f v( )∇v'
f v '( )− f v '( )∇v f v( )⎡⎣ ⎤⎦

ε k,ω( ) =1+ ω p
2

k2
dv∫
k •∇v f v( )
ω − k • v( )Plasma Dielectric Function: 	



ϕ k( ) = e2

2π 2k2
Coulomb Potential Fourier Transformed:	



See Dwight Nicholson’s Introduction to Plasma Theory for a derivation in Appendix A	


	


See Ichimaru’s Statistical Plasma Physics, Vol. I, Chapter 2. It is more comprehensive 	
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Vlasov-Landau-Fokker-Planck:���
Small Angle Scattering Takes Over the RHS	



∂
∂t

+ v •∇x +
qs
ms

E + v
c
×B⎛

⎝⎜
⎞
⎠⎟ •∇v

⎡

⎣
⎢

⎤

⎦
⎥ fs = −∇v • CDF fs[ ]+ 12∇v •∇v :

!
DDC fs⎡⎣ ⎤⎦

CDF =
8πne4 lnΛ

m2 ∇v dv ' f
v − v '∫

!
DDC = 8πne

4 lnΛ
m2 ∇v∇v dv '∫ v − v ' f

Coefficient of dynamical friction: Slow down a particle by numerous 	


small angle scattering events.	



CDF

!
DDC Diffusion Coefficient:  for diffusion or spread sideways.  
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We Aim To Understand the Behavior of Kinetic Electrostatic 
Oscillations Excited and Sustained in a Plasma: Nonlinear, 
Nonstationary, Self-Organized, Asymptotic States. Ex. KEEN Waves	



E0	


k0	


Ω0	


T0	


	


Pump 	


Laser	



Es	


ks	


Ωs	


Ts	


	


Probe 	


Laser	



Make simulation box length between 30 and 100 vortices	


	


This depends on the amplitude and duration of the drive	


	


The ponderomotive force drives waves as long as the 	


pump and probe are both ‘on’ at the same time: (@ EPW frequency drive SRS)	


	


The plasma excitation will have a driver whose amplitude scales as √(E0�ES)	


Whose duration is the overlap between the Pump and Probe pulses 	


Whose wavevector and frequency will be at the difference between the 	


pump and the probe wavevectors and frequencies, respectively. 	



Background	


Ion density	


Profile nI(x)	
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Vortex Merging Is Commonly Observed ���
in V-P & V-M Simulations of SRS, For Instance	
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Ponderomotively Driven KEEN ���
Waves as Well (F. Tsung, UCLA)	
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Optical Mixing Driven KEEN 
Waves Are Also Detected with EM 

PIC Code (OSIRIS, F. Tsung)	
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The Origin of the Bias towards EPW, EMW, ���
IAW & EAW-Centrism and Its Shortcomings	



� 

ωEMW
2 = ω p

2 + c 2kEMW
2

ωEPW
2 = ω p

2 + 3vth
2 kEPW

2

ω IAW = u•k IAW + cskIAW
� 

ωEPW = 1+ 3 kEPW
2

� 

ωEMW = 1+ 511 Te,keV( ) kEMW2

� 

ω IAW = Z me

MI

kIAW

KEEN 
Waves 

EPW 

EAW 
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153o 
600 nm & 697 
nm Raman 
Shifted beam 

527 nm beam 

Transmitted  
Beam 
Diagnostics 

Backscatter 
Streak Camera 

3w 351 nm 
Thomson 
Scattering beam 

Thomson 
Scattering 
Streak Camera 

gas jet plasma 

TRIDENT target chamber 

KEEN Wave Experimental Layout	


of the Beams and Diagnostics on Trident 
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Thomson Scattering KEEN Waves on 
Trident at LANL in the Spectral Gap of 

Traditional Plasma Physics Lore

697 nm

600 nm

He

N2 / H2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6

ω
/ω

p

kλD

CH
Montgomery LANL PRI-LANL

KEEN Team

PRI-LANL
KEEN Team



Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

c
≈
1
137

Paradigms of Kinetic Behavior of Vlasov���
Plasmas: 4 Old, 1 New	



Landau Damping	


Linear Collisionless	



 Dissipation! ‘46	



Quasilinear Theory Flatten the e- 
VDF by Phase Space Diffusion 

balancing growing modes (RPA) 
dynamic Equilibrium ‘62 	



Stochasticity found almost always when particles are 
injected into nonstationary electric or EM fields ‘80’s 
and ‘90’s Stochasticity, Diffusion, Loss of Coherence 

NOT Self-Consistent	



BGK Modes	


Static Equilibria	


Nonlinear ‘57	



KEEN Waves	


‘02-’03, Self Consistent NL 
non-stationary self-organized 

states	
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Archetypal Kinetic Instability Leading ���
to Stochasticity in Plasma Physics is ���
the Beam-Plasma Instability	
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Our Relativistic V-M Code Solves Maxwell’s 
Equations on a Staggered Mesh	
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The Vlasov Equation is Solved Using 2-D 
Interpolation with a Tensor Product of Splines	



The characteristics are solutions of the equations:	



� 

dx
dt

= m pxe
me

≡Vxe (x, pxe )

� 

dpxe
dt

= −Ex −
me

2γ e
∂a⊥

2

∂x
≡Vpe (x, pxe )

Let x(tn) and pxe (tn) be the point from whence the characteristic originates  	



at time tn. Then	



� 

Δ xe = Δt
2
Vxe (x jx

−Δ xe , pxe, j p −Δ pe )

Δ pe = Δt
2
Vpe (x jx

−Δ xe, pxe, j p −Δ pe )

� 

Δ xe ≡
x jx

− x(tn )
2

� 

Δ pe ≡
pejp − pe (tn )

2with 

These are two implicit equations for Δxe  and Δpe. They are solved iteratively. 
All phase-space quantities are interpolated using a tensor product of splines.	



Finally, the distribution function is shifted along those characteristics. 

� 

∂fe
∂t

+ me
pxe
γ e

∂fe
∂x

− Ex −
me

2γ e
∂a⊥

2

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂f
∂pxe

= 0

and 
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The Ponderomotive Force (PF) Driven ���
Vlasov-Poisson System of Equations	



ψ AMP =
0.037
Te,keV

I
0,1014W /cm2

λ0,µm
2( ) Is

I0
λs

λ0

⎛
⎝⎜

⎞
⎠⎟

∂ fe
1D

∂ t
+ v ∂ fe

1D

∂ z
− E − ∂ψ PF

∂ z
⎛
⎝⎜

⎞
⎠⎟
∂ fe

1D

∂ v
= 0 t =ω pet; z = z λDe ; v = v vth

∂E
∂ z

=1− fe
1D dv∫

v2 fe
3D dv3∫ = 3vth

2

ψ PF = ψ AMP
(i) cos kiz −ω i t( )

#drivermodes
∑

ψ AMP =

eE0
mω0

⎛
⎝⎜

⎞
⎠⎟

eEs

mω s

⎛
⎝⎜

⎞
⎠⎟

vth
2

∂ψ PF

∂ z
= − ψ AMP

(i) ki sin kiz −ω i t( )
#drivermodes
∑

Vlasov	



Poisson	



� 

v = v− vφ( ) vφ

18 
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What Are KEEN Waves?	



t = 1000	


0

1

2

3

4

5

6

7

0 500 1000 1500 2000

First four modes of the density response
a

DRIVE
 = 0.2, k

Drive
 = 0.26, ω

DRIVE
 = 0.37

k=1
k=2
k=3
k=4

| ρ(k) |

time, ω
p

-1

Nonlinear 	


Kinetic	



Self-organized	


Non-stationary 	


Coherent States 	



of a Vlasov Plasma	
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At a Higher Drive Frequency, More Intricate 
Entanglements in Phase Space Arise	
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Detailed Diagnostics Reveal Classic Features of 
KEEN Waves at this kDr = 0.26. ωDr=0.5	





Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

c
≈
1
137

The Various Harmonic Modes of the Density Response of KEEN 
Waves: Higher Harmonics Have Wider Frequency ���
Content as they are Chaotically Evolving 	
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The First Few Harmonics Are Phase Locked 
and Evolve in Step	
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The e- VDF in its Non-Oscillatory Component when a KEEN Wave Is 
Formed. As Expected a Wider and Flatter Region around vφ = 1. 423 ���
Is formed with Increasing aDRIVE	



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5

The Mean Field 

f(a=0.05)
f(a=0.1)
f(a=0.2)
f(a=0.3)
f(a=0.4)
f(a=0.75)
f(a=1)

e- Velocity Distribution Function

f(0
) (a

D
R

IV
E =

 0
.0

5 
- 1

.0
) 

V

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

The Mean Field Pertrubed

f(a=0.05) - f
MB

f(a=0.1) - f
MB

f(a=0.2) - f
MB

f(a=0.3) - f
MB

f(a=0.4) - f
MB

f(a=0.75) - f
MB

f(a=1) - f
MB

f^ (
0)

(a
D

R
IV

E =
 0

.0
5 

- 1
.0

) -
 f M

A
X

W
EL

LI
A

N

V/V
th

e- Velocity Distribution Functions
For KEEN Waves

kDR = 0.26, ωDR = 0.37	



24 



Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

c
≈
1
137Unusual Trapped Particle Orbits Start ���

Demystifying KEEN Wave Dynamics & ���
Pointing Out Essential Differences with BGK Modes 	
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Amplitude Drive adrive = 0.0125 and tdrive = 100: 
Left with Randomly Distributed “Action Loops” 	
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Imagine Some Heavy Metal Music 
Accompanying this Movie of Particle 
Orbits Making Up the KEEN Wave	



• Each color 
represents a 100 ωp

-1 
units.  

• 400 particle orbits 
with initial conditions 
in the v range  

(- 0.896 to 1.046.) 
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Lagrangian Particle Statistics Gathered By Running 
them Backwards in the Self-Consistent Electric Field 
of a KEEN Wave Shows Differences btw Partitions 	
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A Useful Representation of the ���
Time-Frequency Evolution of���

a Field Is Via its Wigner Transform	


The Wigner transform Wρpart(t,ω) is a bilinear functional of the scalar ρpart(t), (density 
field in one phase space partition), which represents the signal in (t, ω) phase space -- 
which is to say-- in time and frequency space simultaneously. 	



� 

Wρk
t,ω( ) = e−iω ′ t ρk t + ′ t 2( )

−∞

∞

∫ ρk
* t − ′ t 2( )

� 

Wρk
t,ω( ) = FFT ρk t + ′ t 2( ) ρk

* t − ′ t 2( ){ }

We will track the evolution of the frequency of ρpart (t) as a function of time	


by studying its Wigner transform and showing how the various partitions	


have their own distinct temporal signatures.	
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The 4 f-Partitions Engaged in Successively 
Trapping and Retarding Wayward Particles 
Have Their Own  (t-ω) Signatures: Wigner 

Distribution Reveals Them	



Orange ρpart 	



f range 0.27-0.34	
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The 4 f Partitions Engaged in Successively 
Trapping and Retarding Wayward Particles 
Have Their Own  (t-ω) Signatures: Wigner 

Distribution Reveals Them	


Blue ρpart 	



f range 0.34-0.43	
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The 4 f Partitions Engaged in Successively 
Trapping and Retarding Wayward Particles 
Have Their Own  (t-ω) Signatures: Wigner 

Distribution Reveals Them	



Red ρpart 	



f range 0.43-0.46	
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The 4 f Partitions Engaged in Successively 
Trapping and Retarding Wayward Particles 
Have Their Own  (t-ω) Signatures: Wigner 

Distribution Reveals Them	


Yellow ρpart 	



f range 0.46-0.63	
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The 4 f Partitions Engaged in Successively 
Trapping and Retarding Wayward Particles 
Have Their Own  (t-ω) Signatures: Wigner 

Distribution Reveals Them	



Turquoise ρpart 	



f range 0.63-1.0	
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Concrete Plan of Action for VP and 
VM Code Comparisons	


•  Simulate 30 -100 vortex long trains in phase space driven by a 

prescribed ponderomotive force or by the crossing of counter-
propagating laser beams. 	



•  Vary the amplitude of the drive, aDr, as well as the drive duration, 
TDr, and drive location in (ωDr, kDr) space. 	



•  Show long time states being created (KEEN waves, EPWs) after all 
drives are turned off. 	



•  Run full suite of diagnostics up to partition of phase space and 
particle orbit statisticsgathering in those partitions.	



•  Ccompute the Wigner transform (t, ω) of the evolution of partitions 
of ρpart^(k)(t) and Epart^(k) (t) and <fpart^(k)(t)>rms, v. This is the l2 norm 
in velocity of the spatial Fourier modes of fpart(x, v, t).	



•  Establish compressibility of KEEN wave physics into low mode 
Fourier truncation and phase space partition condensation. 	
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presence of a PF driven KEEN wave	



How Can We Use KEEN Waves?	
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How Can We Use KEEN Waves?	
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presence of a PF driven KEEN wave	



How Can We Use KEEN Waves?	
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39 

Demonstration of the suppression of a PF driven EPW in the ���
presence of a PF driven KEEN wave	



How Can We Use KEEN Waves?	
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40 

Demonstration of the suppression of a PF driven EPW in the ���
presence of a PF driven KEEN wave	



How Can We Use KEEN Waves?	
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How Can We Use KEEN Waves?	
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How Can We Use KEEN Waves?	
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How Can We Use KEEN Waves?	
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How Can We Use KEEN Waves?	
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presence of a PF driven KEEN wave	



How Can We Use KEEN Waves?	
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New Modes of Self-Organization in HED Plasma Can Destroy Old 
Undesirable Modes by a Novel 2:1 Resonance-- KEEN Waves Can ���
Kill EPWs and SRS and Once Off Resonance, Coexist With Them	



At 2:1 Frequency	


Resonance	



Past 2:1 	


Frequency 	


Resonance	
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The Density Response to KEEN + EPW Drives 
(Commutator ≠ 0) (Notice Difference in Scale btw L & R)	
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Using the 2:1 Resonance Make Multimode KEEN Wave 
Suppress Otherwise Stable NL Kinetic EPW	
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Now we can suppress Stimulated Raman 
Scattering and EPW growth! Use KEEN 
waves to make plasma phase space 
inhospitable to resonant (delicate, 
trapped particle frequency shift 
detuned/saturated) high frequency mode 
excitation.	



• A good example of mode pruning, 
nonlinear structures suppressing each 
other and externally steered instability 
control. 	
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Vortex Merging Is Commonly Observed ���
in V-P & V-M Simulations of SRS, For Instance	
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SKEENS-SRBS Co-Evolution and Interactions 
in Fully Relativistic Vlasov-Maxwell Simulations	
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SKEENS-SRBS Co-Evolution and Interactions 
in Fully Relativistic Vlasov-Maxwell Simulations	
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Kinetic Modeling of HED Plasmas-���
A General Program Might Also Include:	


•  Use adaptive grids and variational algorithms to preserve energy, 

momentum and entropy in discretized Lagrangian formulation of 
dynamics models. Make higher dimensional calculations possible             
(in 6 dimensional phase space). Do Vlasov right. Then add collisions.	



•  See how to disentangle complex dynamics projected down to low 
dimensional spaces such as the one body distribution function evolving in 
(x, v, t), by projecting back up to higher dimensional spaces. 	



•  How high do you have to go before no meaningful collective (geometry, 
memory) effects are visible? Can computing just below that be optimal in 
terms of smooth tractable dynamics? Are sparse representations possible 
in that higher dimensional space? 	



•  Is lower dimensional chaos an artifact of the downward projection? 
(Coifman’s dream) Can turbulence be so disentangles or parts thereof? 
(Jones’ truism: Everything looks like diffusion in high enough 
dimensions). 	




