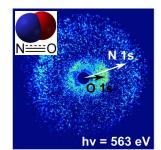
The Schwinger plasma: An experimental program to study the plasmas that exist inside the vacuum

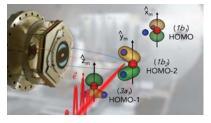
Philip Bucksbaum
Stanford PULSE Institute
SLAC National Accelerator Laboratory,
Stanford University
Menlo Park, California, USA

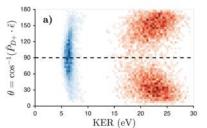
Work supported by the DOE Office of Science, Fusion Energy Sciences Division

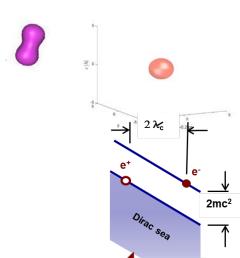
The Bucksbaum Group studies motion on the quantumscale induced and controlled by strong fields

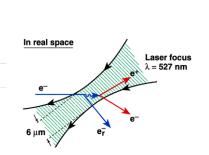

StanfordPULSE Institute

- Attosecond electron motion across molecules induced by x rays or strong fields
 - James Cryan, Ruaridh Forbes, Andrei Kamalov, Jordan O'Neal, Nick Werby, Anna Wang:
 Supported by DOE-BES-CSGB




 Ruaridh Forbes, Andy Howard, Greg McCracken, Chelsea Liekhus-Schmaltz; Supported by NSF

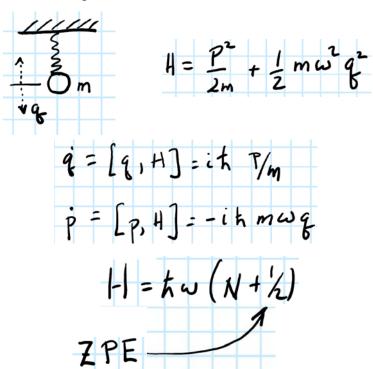

- Ultrafast X-ray diffraction for molecular movies
 - Adi Natan, Matt Ware, Mike Glownia, James Cryan, Ian Gabalski; Supported by DOE-BES-CSGB
- Strong-fields beyond the Schwinger limit
 - Sebastian Meuren, David Reis; Supported by DOE-FES


Work supported by DOE Office of Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division

Come to the Ford Distinguished Lecture in UM Physics on February 12, 2020 to hear about this.

What is the vacuum? Not exactly nothing...

- Occupies all space
- Has no charge
- Has no angular momentum (isotropic)
- Has no preferred origin (homogeneous)
- Non-dispersive (c(λ)=constant)
- Maxwell's Equations for fields in the vacuum:

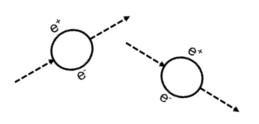

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = 0$$
 $\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{1}{c} \frac{\partial \overrightarrow{B}}{\partial t}$ Both Lorentz and gauge invariant $\overrightarrow{\nabla} \times \overrightarrow{B} = \frac{1}{c} \frac{\partial \overrightarrow{E}}{\partial t}$ $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$

Energy density = ?Zero?? Maybe not...

All particles and fields in quantum mechanics have "Zero Point Energy"

Example: Harmonic Oscillator

Light has it, too

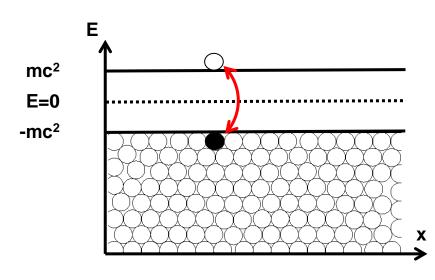

H =
$$\hbar \omega \left(N_{k,\lambda} + \frac{1}{2} \right)$$

Each mode has $ZPE = \frac{1}{2}\hbar \omega$
Number of modes: $\frac{V}{8\pi^3} \sum_{\lambda} \int_{3}^{3} k$
 ZPE density is $\frac{2}{8\pi^3} \int_{3}^{3} k \left(\frac{1}{2} \hbar \omega \right)$
Over a finite frequency range
 $P_0(\omega_1, \omega_2) = \frac{\hbar}{8\pi^2 c^3} \left(\omega_2^4 - \omega_1^4 \right)$

How much? I did the math: 50 visible-wavelength photons / μ^3 ;

Or about 100 kW of visible ZPE entering and leaving your eyes -- in the dark.

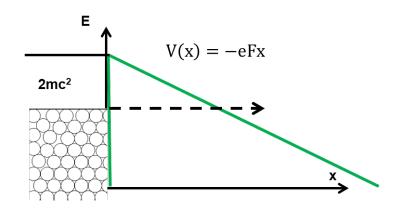
If the vacuum contains radiation, then it also contains matter from pair-production by vacuum modes with $\hbar\omega \geq 2mc^2$:



Heisenberg Uncertainty relation sets the scale: $\Delta E \Delta t \geq \hbar$, with $\Delta E = 2mc^2$

Virtual pair "lifetime" $\Delta t = \hbar/2mc^2$ = 0.6 billionths of a femtosecond (0.6 yoctoseconds)

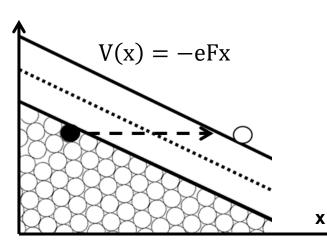
Virtual pair "size" = $2\hbar/mc = 2\lambda_c$ = 0.39 femtometers


Dirac's View: Vacuum is like an insulator with a negative energy "sea" filled with electrons.

Quantum fluctuations create virtual electron-"hole" pairs --

A PLASMA
IN THE QUANTUM VACUUM

Interrogating the quantum vacuum plasma with an external field **F**


$$\sim e^{-\frac{4}{3}\frac{4m^2c^3}{e\hbar F}} = e^{-\frac{16}{3}\frac{F_{Cr}}{F_L}}$$

$$F_{cr} = \frac{mc^2}{e\lambda_C}$$

Interrogating the quantum vacuum plasma with an external field **F**

Ε

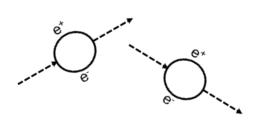
Incorporate relativity (Dirac Equation)

$$\frac{j_{trans}}{j_{incident}} = \frac{e^{-\pi F_{cr}/F_L}}{1 - e^{-\pi F_{cr}/F_L}}$$

This is a Fermi-Dirac distribution where each mode tunnels with probability

$$P_n = e^{-\pi F_{Cr}/F_L}$$

J. Schwinger, Physical Review 82, 664 (1951).


$$\frac{F_L}{F_{cr}} = \frac{eF_L\lambda_C}{mc^2} = \frac{work\ done\ over\lambda_C}{mc^2}$$

$$F_{cr} = \frac{m^2 c^3}{e\hbar} = 1.3 \times 10^{16} \, V/cm$$
, the Schwinger critical field

$$I_{cr} = \frac{F_{cr}^2}{4\pi} = 2.2 \times 10^{29} W/cm^2$$
. So how big is that?

Big enough to pull electrons out of the vacuum during quantum fluctuations:

Virtual pair "lifetime" = $\hbar/2mc^2$ Virtual pair "size" = $2\hbar/mc = 2\lambda_c$ Work done on a virtual pair over its lifetime $|e|F_{cr}2\lambda_c = 2mc^2$

Or, in relativistic units:

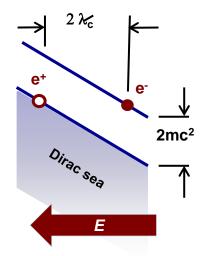
$$F_{cr} = \frac{m^2 c^3}{e\hbar} = 1.3 \times 10^{16} \, V/cm$$

$$I_{cr} = \frac{F_{cr}^2}{4\pi} = 2.2 \times 10^{29} W/cm^2$$

A uniform (or low frequency laser) field of F_{cr} does work $2mc^2$ on a virtual e^+e^- pair in a distance on the order of the Compton wavelength $\lambda_c = \hbar/mc$, implying the instability of the vacuum under $e^+ - e^-$ pair creation.

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

What laser properties really matter for this application? Laser field amplitude F_L

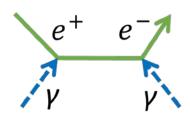


Lorentz-invariant dimensionless quantities related to F_L :

$$\eta = \frac{eF_L\lambda_L}{2\pi mc^2} = \frac{work \; done \; in \; 1 \; radian \; of \; laser \; wavelength}{mc^2} = \\ a_0 = \frac{eF_L}{\omega_L mc} = \frac{momentum \; transferred \; in \; 1 \; radian \; of \; laser \; period}{mc}$$

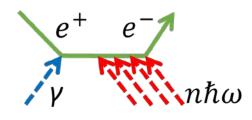
Dimensionless figure of merit for breaking the vacuum:

$$\Upsilon = \frac{eF_L^*\lambda_C}{mc^2} = \frac{work\ done\ over\lambda_C}{mc^2} = \frac{F_L^*}{F_{cr}}$$

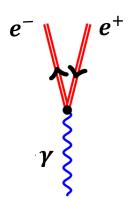

(F_L^* is in the CM frame for the pair)

When $\Upsilon = 1$, the quantum vacuum breaks down into e^+e^- pairs.

Paradigm shift from QED to SFQED



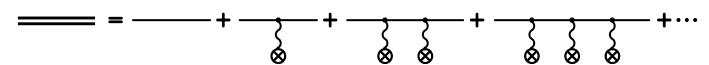
$$\gamma + \gamma' \rightarrow e^+ + e^-$$


Breit-Wheeler

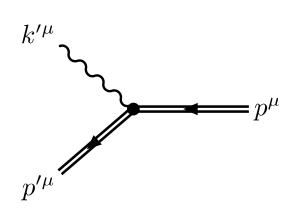
$$\gamma + n\hbar\omega \rightarrow e^+ + e^-$$

Multiphoton Breit-Wheeler

$$\gamma + \vec{A}_L(\vec{x}, t) \rightarrow e^+ + e^- + \vec{A}_L(\vec{x}, t)$$


Dressed state Breit-Wheeler

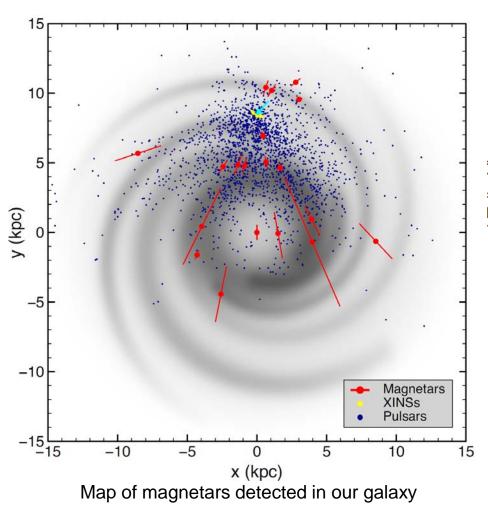
Non-linear/non-perturbative QED



$$\eta = \frac{e}{mc^2} \sqrt{\langle A_{\mu} A^{\mu} \rangle} = \frac{eE\lambda}{2\pi mc^2}$$

$$\eta = \frac{e}{mc^2} \sqrt{\langle A_\mu A^\mu \rangle} = \frac{eE\lambda}{2\pi mc^2} \qquad \Upsilon = \frac{e\hbar}{m^3c^5} \sqrt{\langle (F_{\mu\nu}p^\nu)^2 \rangle} = \frac{eE^*\lambda_c}{2\pi mc^2} = \eta \frac{\lambda_c}{\lambda^*}$$

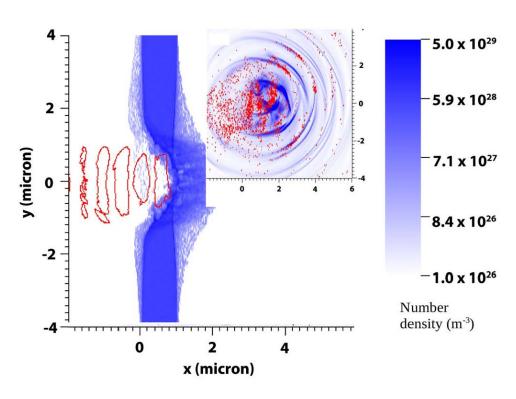
Dressed state (Furry, Volkov, ...)


Photon emission

Multi-photon Compton Quantum radiation reaction

Multi-photon Breit-Wheeler Pair production "Schwinger Assisted" pair production

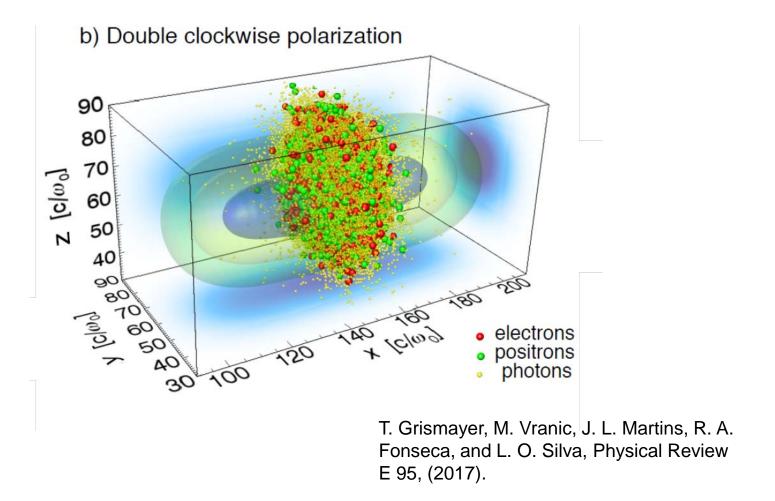
Magnetars are spinning neutron stars that contain B fields above the Schwinger critical value


 B_{crit} r = 0.360.7 p = 0.180.6 0.5 kT (keV) 0.4 0.3 0.2 0.1 10¹⁵ 10¹³ Magnetic Field, B (G)

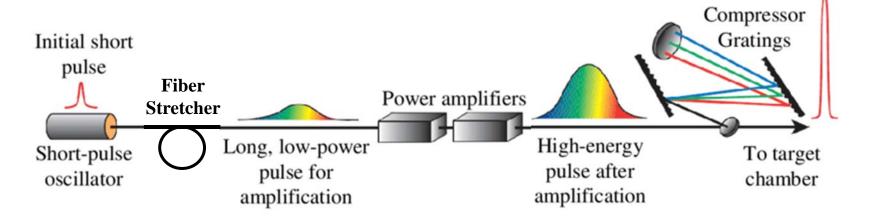
Surface magnetic fields (inferred from P and \dot{P})

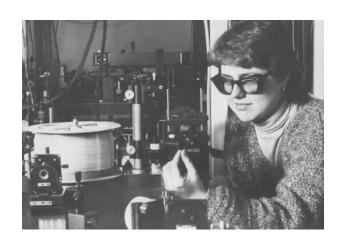
S. A. Olausen and V. M. Kaspi, ApJS 212, 6 (2014).

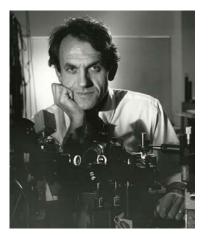
Dense e+e- plasmas produced by Breit-Wheeler pair production at a surface create a dense beam of gamma rays

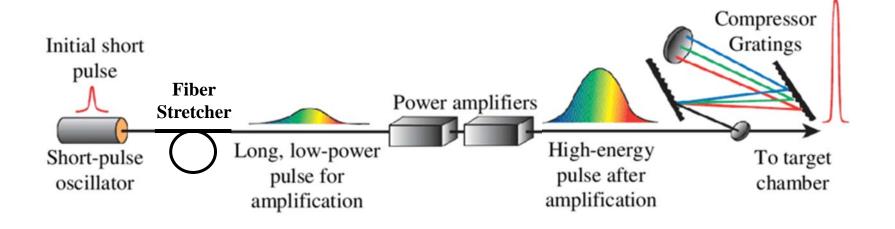


C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Phys. Rev. Lett. 108, 165006 (2012).


Above the Schwinger threshold colliding laser beams decay into a cloud of e+e- plasma, a "QED Cascade."

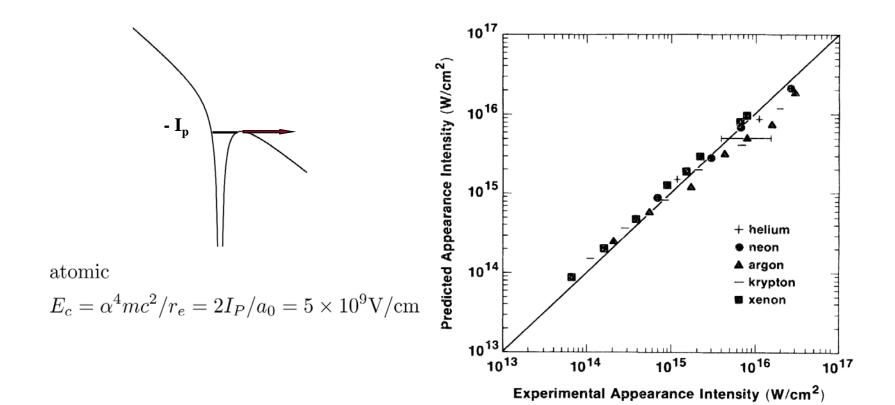



Breaking the vacuum in the lab: First breakthrough: CPA, circa 1985, started with the "Table-top Terawatt" laser

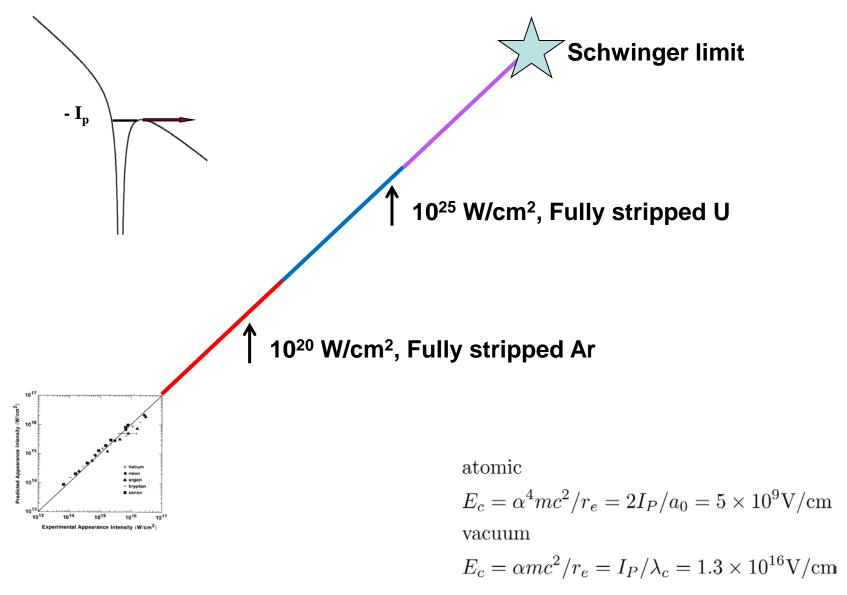

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, 219 (1985)

First breakthrough: CPA, circa 1985, started with the "Table-top Terawatt" laser

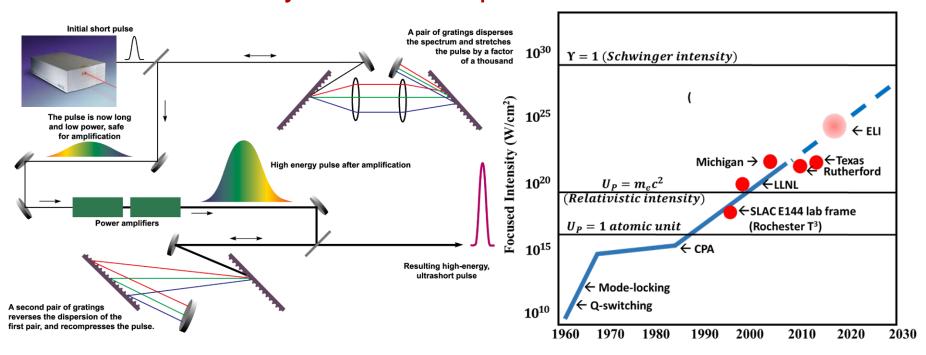
Two happy people in Stockholm last year:

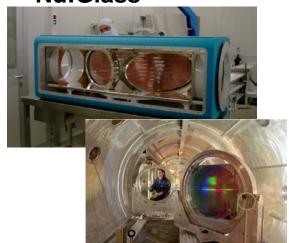

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, 219 (1985)

That T³ laser (in Rochester, not Michigan) was used to pull electrons out of atoms. It was a start...

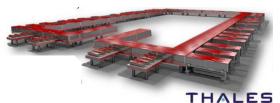


S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, Phys. Rev. Lett. 63, 2212 (1989).

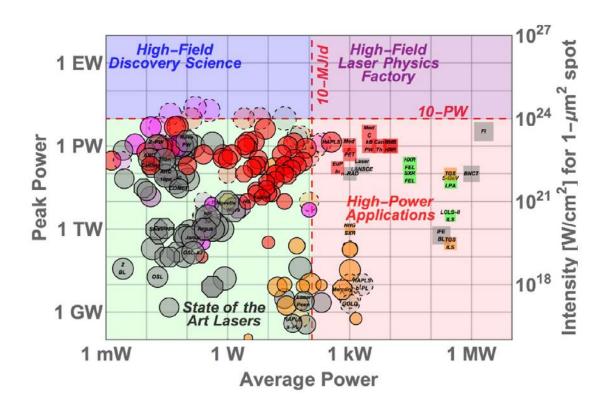

Where is high intensity physics going?



Later refinements have brought us to the petawatt frontier illustrated by the Mourou plot



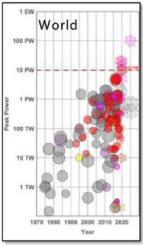
Ti:sapphire


OPCPA

Most of these lasers are being built for high field discovery science

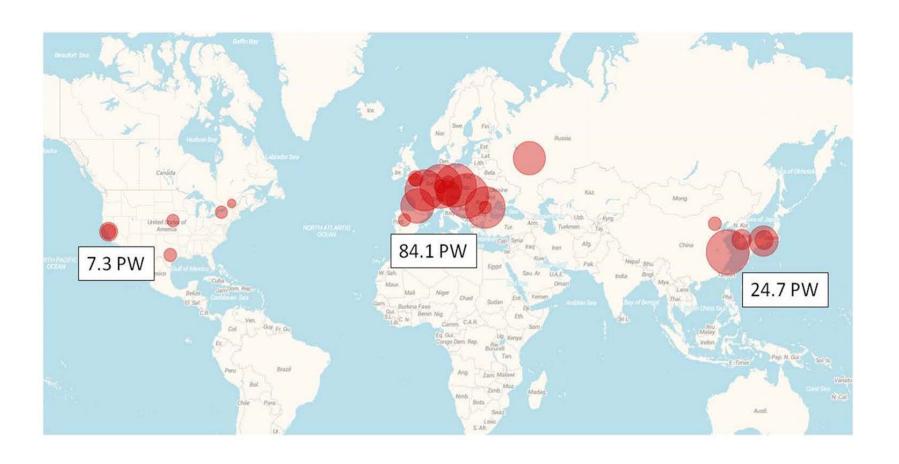
C. N. Danson, et al., High Pow Laser Sci Eng 7, e54 (2019).

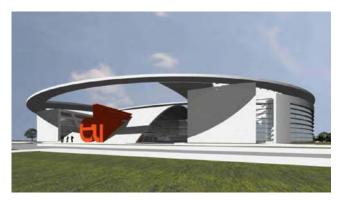
- Ti:Sapphire
- Nd:X
- OPCPA

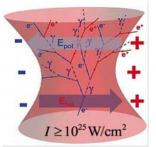

- In operation (solid line)
- () Planned (dashed line)

The comprehensive Mourou plot:

C. N. Danson, et al., High Pow Laser Sci Eng 7, e54 (2019).




PW-class lasers: concentrated in Europe


European ELI project (~\$1B)

- -Ultrafast light sources, and coherent x-ray sources
- -PW drive laser
- -Several beam lines, from 10KHz 100 mJ to 0.1 Hz 300J

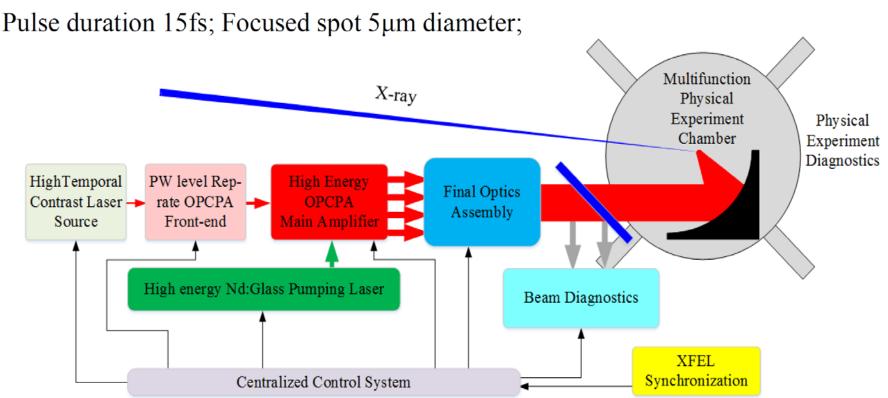
High Energy Beam-Line Facility (Prague, Czech Republic)

Beam lines from -200mJ to 1.3kJ lasers, including 2 10PW lasers; Six experimental areas, including exotic physics, acceleration, x-rays, materials science.

10^{23 - 24} W/cm²
@Beamlines and NP
MIPSE December 2019

Nuclear Physics Facility (Magurele, Romania)

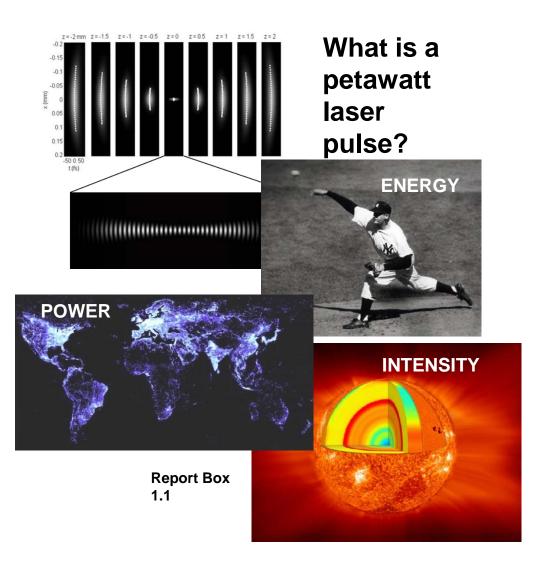
2 multi-petawatt, 200J, 0.1Hz, <30fs lasers Compton backscatter gamma ray source Experiments aimed at nuclear physics.



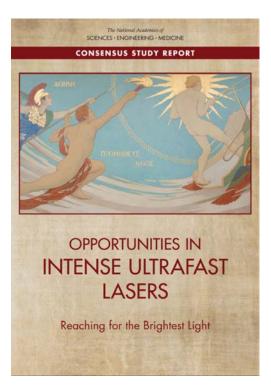
China plans to dominate this technology, and probably will, with plans for a 100 PW system based on Optical Parametric CPA:

■ Main specifications:

Focused intensity $1 \times 10^{23} \,\text{W/cm}^2$; Peak power 100 PW;



What's one Petawatt after all? Not enough for our needs.

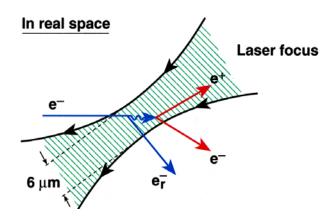


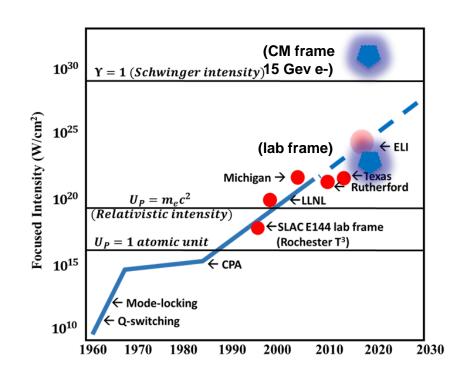
- 100 J in 100 fs, at λ =800 nm, focused to 10 μ m $\Rightarrow 10^{21} W/cm^2$.
- The total energy, 100 Joules, is about the the kinetic energy of a pitched baseball, calories in a potato, 10x the energy in a SLAC electron bunch.
- The peak power, 1 PW, is nearly 100x the world's power comsumption rate.
- The focused intensity is greater than the center of the sun. The rms electric field is 100 trillion V/m.
- $F_L = 10^{12} V/cm$, only $10^{-4} F_{cr}$

SFQED is featured prominently in the recent NAS "Reaching for the Brightest Light" PW laser report.

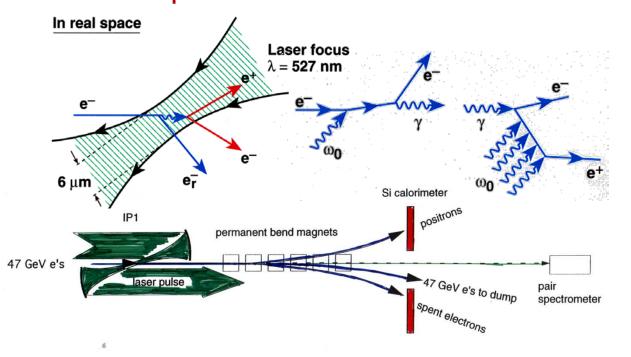
Full report http://nap.edu/24939

5.7	7	Extreme Intensity: toward and beyond the Schwinger Limit of $10^{14} extsf{PW/cm}^2$
	5.7.1	Introduction
	5.7.2	The Schwinger Limit
	5.7.3	Vacuum Polarization: Matter from Light
	5.7.4	Nonlinear Thomson and Compton Scattering
	5.7.5	Radiation Reaction
	5.7.6	Vacuum Polarization: Elastic Light Scattering
	5.7.7	Beyond the Standard Model

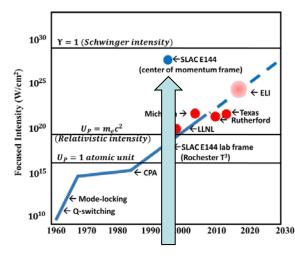

Study conclusions


- 1) The science is important.
- 2) Applications exist in several areas.
- 3) The community is large but fragmented.
- 4) No cross-agency stewardship exists.
- 5) The US has lost its previous dominance.
- 6) Co-location of intense lasers with existing infrastructure is essential; key US advantage over ELI
- 7) University/Laboratory/Industry cooperation is necessary to retain and renew the talent base.

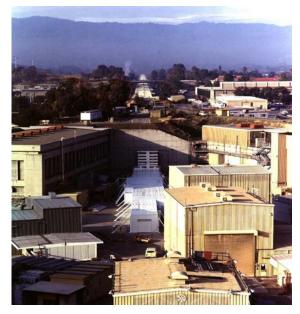
Here's what makes collocation essential:



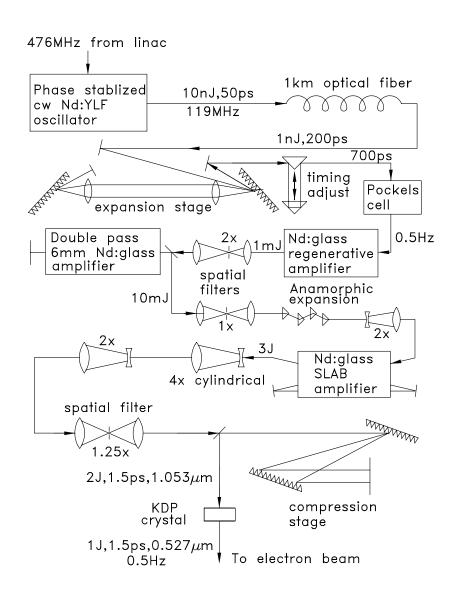
- Intensity of the laser in the CM frame of a relativistic electron scales as $4\gamma^2$
- Fundamental physics in a new nonperturbative regime
 - Transition from multiphoton to tunneling.



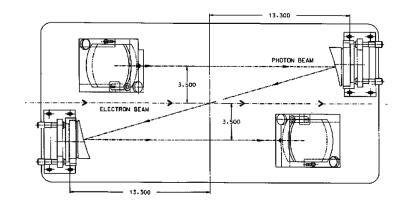
The highest intensity experiment to date is SLAC E144, which pushed lasers off the Mourou plot trend line:



- Near head-on collisions of TW laser ($\hbar\omega$ = 2.34 eV) with backscattered photons, $\hbar\omega$ ~ 28 GeV, from 46.6 GeV SLAC beam.
- Need ≥ 4 photons to produce a pair (1.02 MeV in COM)
- Intensity in COM frame approaching Schwinger limit (~10²⁹ W/cm²) and QED critical field.



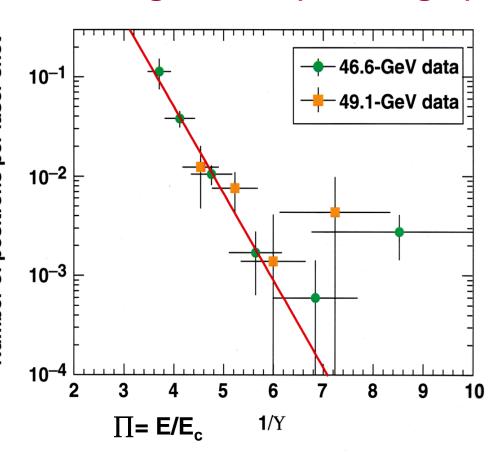
FFTB (now LCLS transport)



The laser: T³:table-top-TW, Chirped Pulse Amplification Nd: glass laser

- Mode-locked Nd:YLF syncrhonized
- to rf cavities to few ps
- Fiber and grating stretcher
- Multi-stage amplification
- Zig-zag SLAB amplifier
- ~1J, 1.5ps, 0.5 Hz
- 1054 nm fundamental
- 527 nm (KDP)
- f/# 6 focusing 2X diffraction limit
- ~10¹⁸ W/cm²

E144 Measured in transition regime

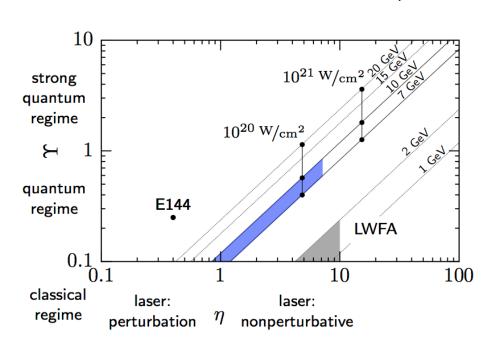


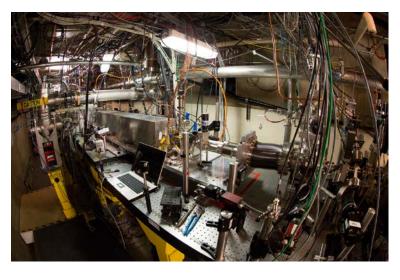
Process involving n laser photons has probability

$P \sim \eta^{2n}$ where $\eta^2 = \left[\frac{eE}{\omega mc}\right]^2 = \left[\frac{e}{\omega mc}\right]^2 Z_0 I$ Number of positrons per laser shot 10-1 Fit $n = 5.1 \pm 0.2$ **Background** 10⁻² 10⁻³ 0.2 0.1 0.3 η at laser focus

Number of positrons per laser shot

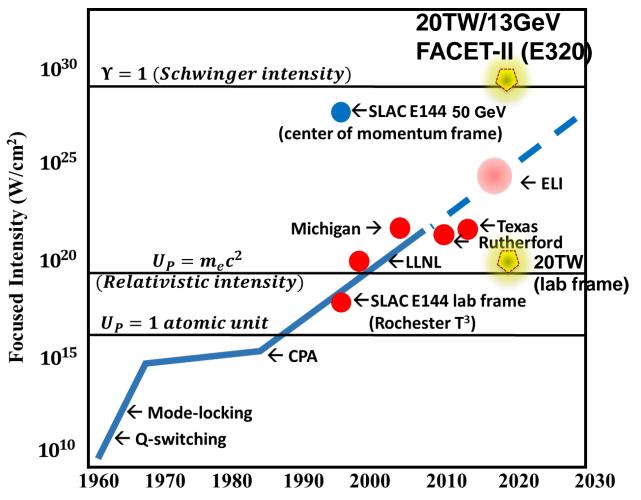
Tunneling Picture (Schwinger)


Multi-photon picture


Fit to $e^{-\alpha/Y} \rightarrow \alpha = 2.02 \pm 0.12$

Reaching strong-field regime @FACET-II

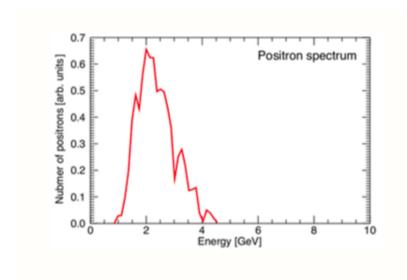
Baseline: 20 TW, 13 GeV



Focused Intensity Frontier

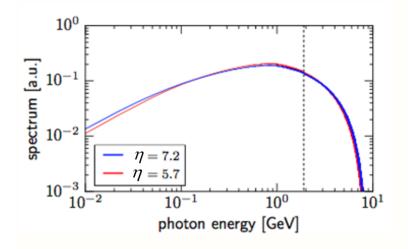
Y >1 possible now with current facilities (SLAC/DESY...) ...and modest laser

FACET-II E-320 collaboration


SFQED theory & simulation	A. DiPiazza, F. Fiuza, T. Grismayer, C.H. Keitel, S. Meuren , L.O. Silva, D. Del Sorbo, M. Tamburini, M. Vranic	
SLAC E144	D.A. Reis (SF AMO/xray), T. Koffas (HEP)	The Control of the Co
LWFA SFQED experiments	G. Sarri, M. Zepf	
Crystal SFQED experiments	R. Holtzapple, U. I. Uggerhoj	
Strong-field AMO/x-ray science	P.H. Bucksbaum, M. Fuchs, C. Rödel	E (Ply)=
Laser-plasma interaction, HEDP	F. Albert, S. Corde, S. Glenzer, C. Joshi, M. Litos, W. Mori	A DET
Accelerator physics	G. White	(# 6) E (# 7
Detectors	A. Dragone, C. J. Kenney	d) =
High intensity lasers	A. Fry	

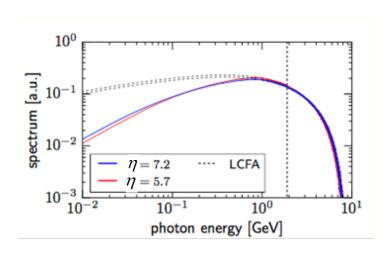
Collaborating Institutions: Carleton University (Canada), Aarhus University (Denmark). Ecole Polytechnique (France) Max-Planck-Institut für Kernphysik (Germany), Helmholtz-Institut Jena (Germany), Friedrich-Schiller-Universität Jena (Germany), Universidade de Lisboa (Portugal), Queen's University Belfast (UK), California Polytechnic State University (CA USA), Lawrence Livermore National Laboratory (CA USA), Princeton University (NJ USA), SLAC National Accelerator Laboratory (CA USA), University of California Los Angeles (CA USA), University of Colorado Boulder (CO USA), University of Nebraska - Lincoln (NE USA)

34


E-320 can test various aspects of SFQED * Stanford Pulse Institute

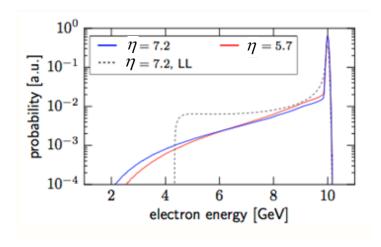
Tunneling pair production/vacuum breakdown

- Pair production inside quasi-static field
- Nonperturbative tunneling exponent
- Much higher statistics: >10³ positrons/shot


Strong-field synchrotron radiation

- Reduced radiation probability, spectrum: redshift
- Coherent interaction with ~10² laser photons
- Emission of high harmonics (up to 8Gev photons

Simulations: Tamburini, Vranic, E-320 collaboration


E-320 can test various aspects of SFQED

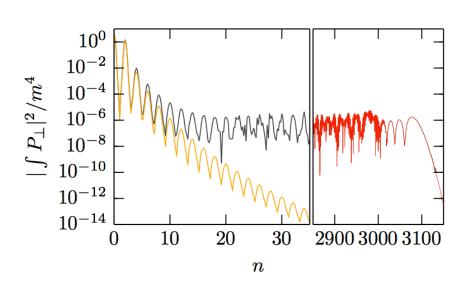
Breakdown of the Local Constant Field Approximation (LCFA)

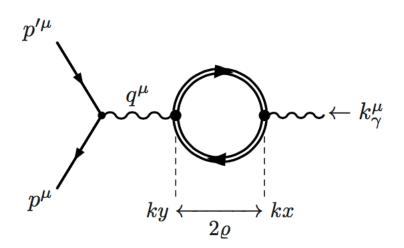
- Applicability of the LCFA: vital for numerical codes
- Formation region depends on photon frequency
- LCFA faild: suppression of low-frequency radiation

Quantum radiation reaction (QRR) -energy

- Stochasticity: broadening of the energy distribution
- Quenching: some electrons don't radiate at all
- Quantum corrections to Landau-Lifshitz

Simulations: Tamburini, Vranic, E-320 collaboration

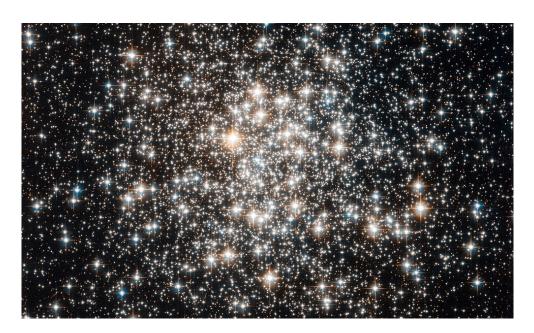

"New" physics: re-collisions.



 $\eta \gg 1, \Upsilon \sim 1$,

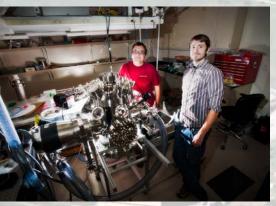
Stationary phase approximation, Tunneling, classical trajectories, re-collisions similar to SF-AMO

Possiblity for $\mu^+ + \mu^-$, $\pi^+ + \pi^-$; π^0 ... productions well below threshold



S. Meuren, 2015

Summary: Plasmas inside the vacuum


- The vacuum is filled with quantum fluctuations of radiation and particles
- The quantum vacuum is a fundamental plasma frontier
- The entry point for study is fields that exceed the Schwinger threshold of $mc^2/e\lambda_c$
- Experimental studies are enabled by locating petawatt-class lasers together with relativistic particle accelerators

Above the Schwinger threshold, CPA lasers can generate copious quantities of electron-positron pairs emulating conditions in the most energetic parts of the universe.

Parts of this work were supported by the U.S.
Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division

Stanford | PULSE INSTITUTE

