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Can nature inspire us a new plasma
propulsion concept!?

Why is it promising?

Under what conditions can it occur?

How does it work?

Can it be replicated in the lab!?
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ES Waves




lon Acceleration by ES Waves
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lon Acceleration by ES Waves
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lon Acceleration by ES Waves
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lon Acceleration by ES Waves
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Why is it promising?
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Under what conditions can it occur?




Does it always occur?
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Are there Necessary and Sufficient Criteria
for Acceleration!?

yes

Spektor & Choueiri, Physical Review E, March 2004




Approach

Hamiltonian |

P’ E
H = 7+ E—cos(l(ip sinf —-v.T)

] i

J. Comp. Phys. 92 230

Numerical Solution: (1991)

Symplectic Integration
Algorithm

Analytical Solution:
2nd order perturbation theory +
Lie transformations

Phys. Plasmas 3(5), May
1996, 1545

Poincare surface of section
(Reduced phase space
diagram)




Poincare Cross Section
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Numerical Simulation

2nd-order Perturbation Theory







Spektor & Choueiri, Physical Review, E, 69(4):Article No. 046402,
2004.













Can it be replicated/verified in the lab!?







Transverse Helmholtz Antenna




. Transverse Helmholtz antenna
Antenna carriage

Configuration Transverse Helmholtz*
Power Supply 100W ENI

Matching circuit None

Frequency 1.92f

Max RMS Field I15G










Parameters

RF Power 250 W (13.56 MHz)
Mag. Field (B) 500G

f. 19 kHz

Py ~1 mT Argon

T, 0.09 eV

P, 30 W

n, 10" em




Plasma Characterization




Dispersion Relation




Plasma is uniform
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Laser Induced Fluorescence System

Ar Il transition
4p*DOy),

668.6130nm
442 .72nm
3d4F
7/2 4S4P3,2




lon Heating in BWX I

MAXIMUM HEATING
SEW 55+ 12%
BEW 90 £ 17%

BEW is unambiguously superior

Possibility of improving result
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Geometry: magnetic slope

<
—>

RN
N
@

\\
NN

' 4

Field magnitude

v
Geometry of system 20




BEW in a magnetic slope
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BEW in a magnetic slope
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1. Guiding centers move toward
magnetic null




BEW in a magnetic slope
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1. Guiding centers move toward
magnetic null

2. Larmor radius increases




BEW in a magnetic slope
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1. Guiding centers move toward
magnetic null

2. Larmor radius increases

3. Trajectories pushed into
magnetic slope




Thruster Proof of Concept

Front View

*Kline, Scime. Physics of Plasma, Dec. 1999
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Conclusions






