Active space experiments with relativistic electron accelerators

Gian Luca Delzanno Los Alamos National Laboratory

Acknowledgements: J. Borovsky (SSI), F. Lucco Castello (KTH), G. Miars, O. Leon, B. Gilchrist (U. Michigan), V. Roytershteyn (SSI) + CONNEX team

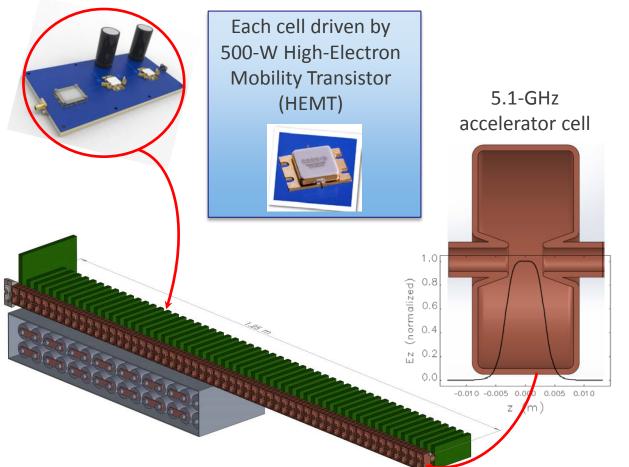
Outline

- I. Electron beams for space physics
- II. Magnetic-field-line connectivity
 CONNEX mission concept
 Spacecraft-charging
- III. Wave-generation

 Beam-plasma coupling efficiency

 Beam-PIE rocket experiment
- IV. Summary

There is renewed interest in space experiments with ebeams, driven by new technological developments

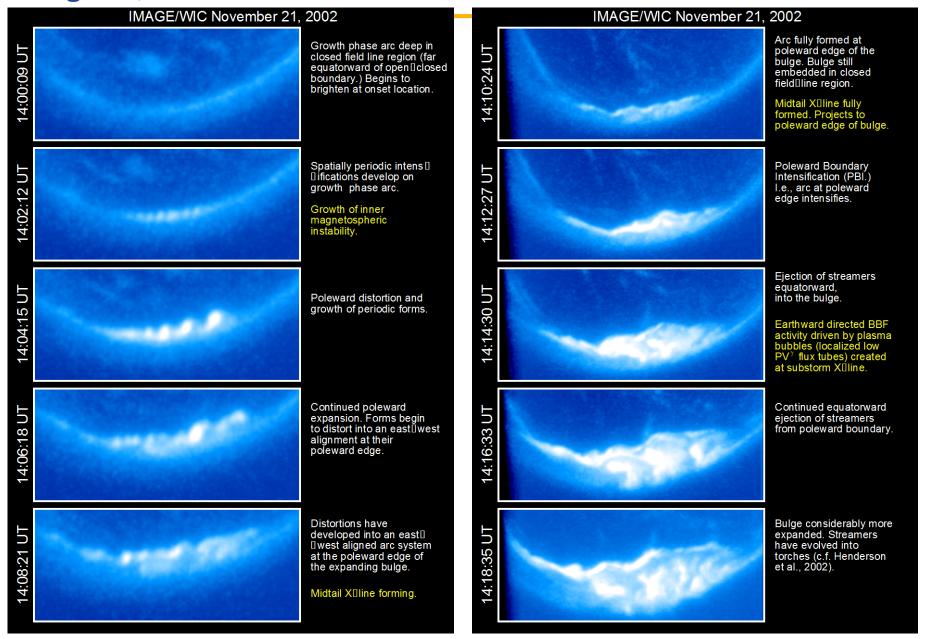

- Rich history of active space experiments with e-beams [from 70s to early 90s]: ~10s keV, <~1 A
 - Vehicle charging: CHARGE, SCATHA, STS 3
 - Beam-environment interactions: ARAKS, POLAR, APEX
 - VLF emissions: SEPAC, SPACELAB 1-2
 - Magnetospheric (radiation belt) physics: ECHO
- Vehicle charging is an issue
 - All these experiments (but SCATHA) were in the high-density ionosphere
 - 6 mA beam on SCATHA caused permanent failure of 3 payloads
- New emerging applications would require operating e-beams in the low-density magnetosphere.
 - Catastrophic spacecraft charging is a major concern
 - Called for as unsolved problem in the Decadal Survey of Space Physics

Enabling technology: compact relativistic e- accelerators

- Substantially reduce spacecraft-charging problems
 - Less current for the same amount of power

• We are currently testing low-voltage, high-power 5.1-GHz solid-state

amplifiers (HEMTs) driving accelerator cavities



Accelerator	Estimates
Total Beam Energy	1 MeV
Length	1.25 m
Weight	31 kg
Beam Power	10 kW peak 1 kW average
Number of Cells	55
Voltage per Cell	18 kV

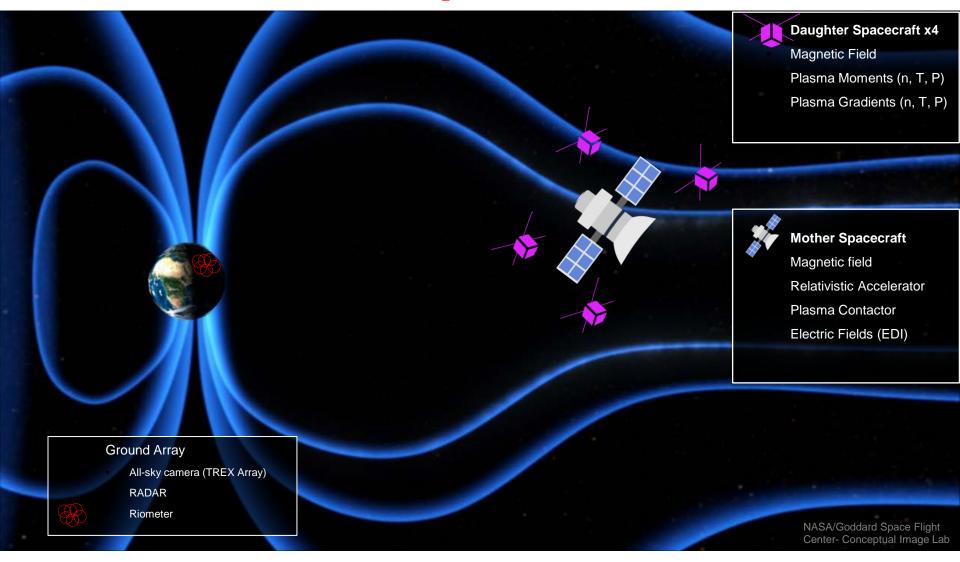
POC: Dinh Nguyen, LANL dcnguyen@lanl.gov

e-beam could be used to establish magnetic field line connectivity unambiguously and address longstanding magnetosphere-ionosphere coupling questions

When geomagnetic activity turns on, auroral arcs emerge, migrate, become unstable and turn into chaos

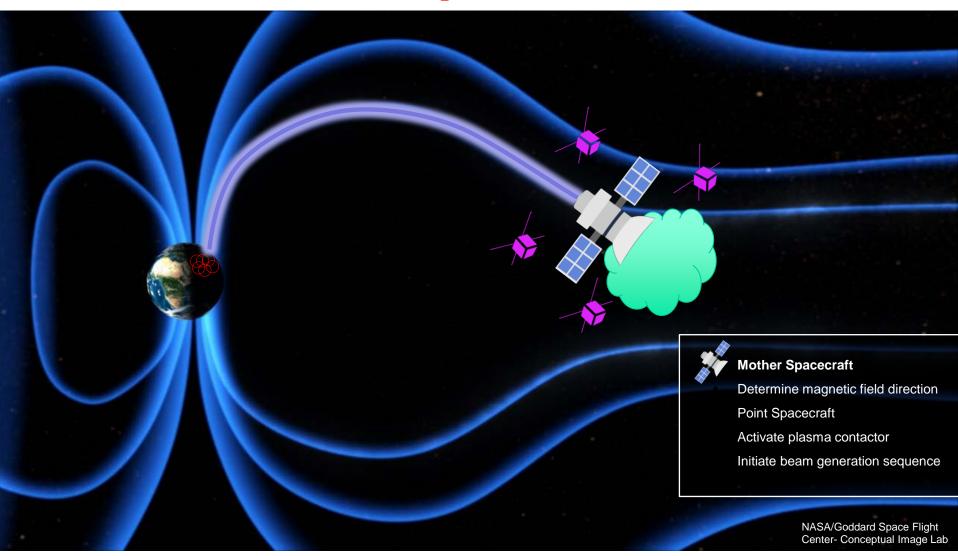
Connecting the dynamic magnetosphere and the auroral ionosphere: How? When? Where?

- Aurora: most-visible manifestation of complex processes operating in the distant MS
- If we understood the processes that produce arcs, we could use the aurora to visualize the processes ongoing in MS
- Long-standing mysteries
 - How do the magnetospheric processes produce conditions where auroras can occur?
 - How accurately can ionospheric and auroral observations specify the state of the magnetosphere?
- We could solve these mysteries by measuring critical MS gradients (pressure, anisotropy, flow and magnetic shear, field-strength) at the site of auroral arcs

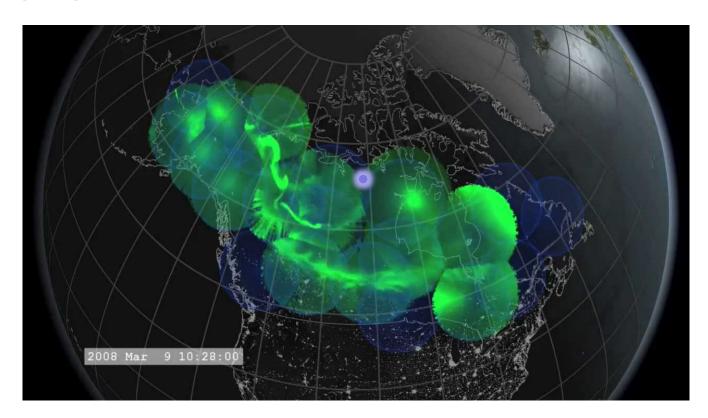

Unfortunately, so far, we cannot determine when our spacecraft are in the equatorial source region of auroral arcs

- Magnetosphere-Ionosphere (MI) connections are determined by the magnetic field
- The ionosphere can be used as a monitor of magnetospheric activity only if magnetic field configuration is known accurately
- Unfortunately, the magnetic field in the near-Earth environment is very dynamic and magnetic field models can be very different from the instantaneous field configuration in the dipole-tail transition, making accurate MI connections impossible
- Thus, we don't know where or how the magnetosphere connects to the auroral ionosphere

2008 Mar 9 10:28:00


How to solve the magnetic-connectivity problem and answer MI coupling questions? 1. Record Magnetospheric and Ionospheric Context

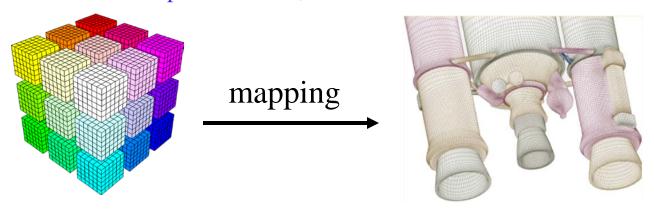
CONNection EXplorer (CONNEX)


2. A mapping sequence is triggered through a timed command plan or scientist in the loop activation

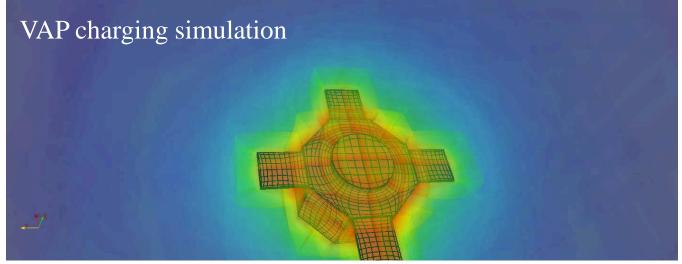
CONNection EXplorer (CONNEX)

3. A beam burst arrives at ionosphere at regular intervals providing realtime assessments of spacecraft location in ionospheric coordinates.

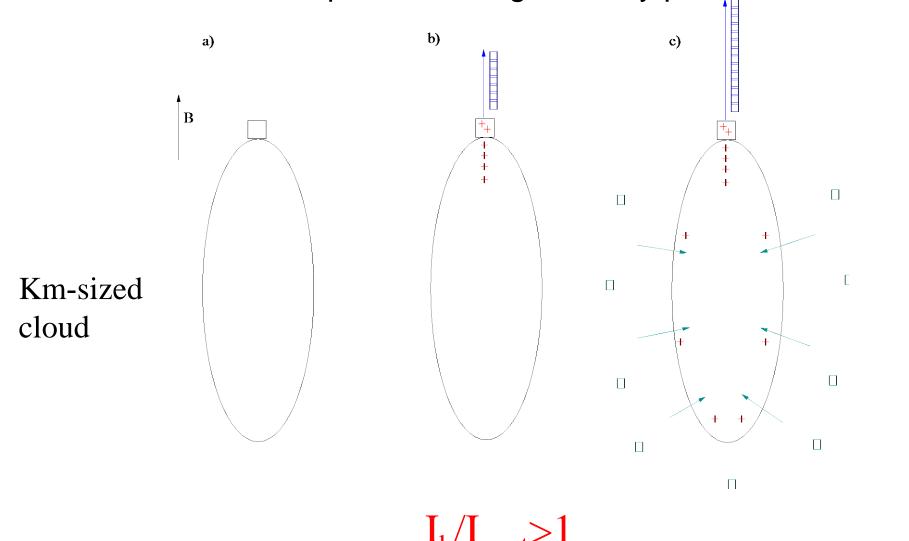
- Beam traverses magnetic field line
 - Stability
 - Deposition and detection
- Beam deposits energy creating light
- Beam is detected by all-sky cameras in auroral context
- Investigating RADAR possibilities incoherent scatter, SuperDARN



Spacecraft charging is the major obstacle to operating high-power e-beams in the low-density magnetosphere

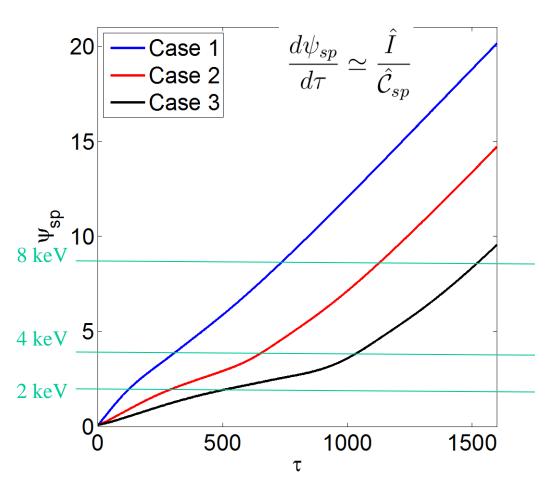

Charging studies with Curvilinear PIC (CPIC)

- Solves kinetic equations in the electrostatic limit: Particle-In-Cell technique
- Mesh: multiple structured, connected blocks


Delzanno et al., IEEE (2013) Meierbachtol et al., JCP (2017)

- Avoids inefficiencies of unstructured-mesh PIC
- Estimated speed-up: >5x (particle mover)
- Highly-parallelized

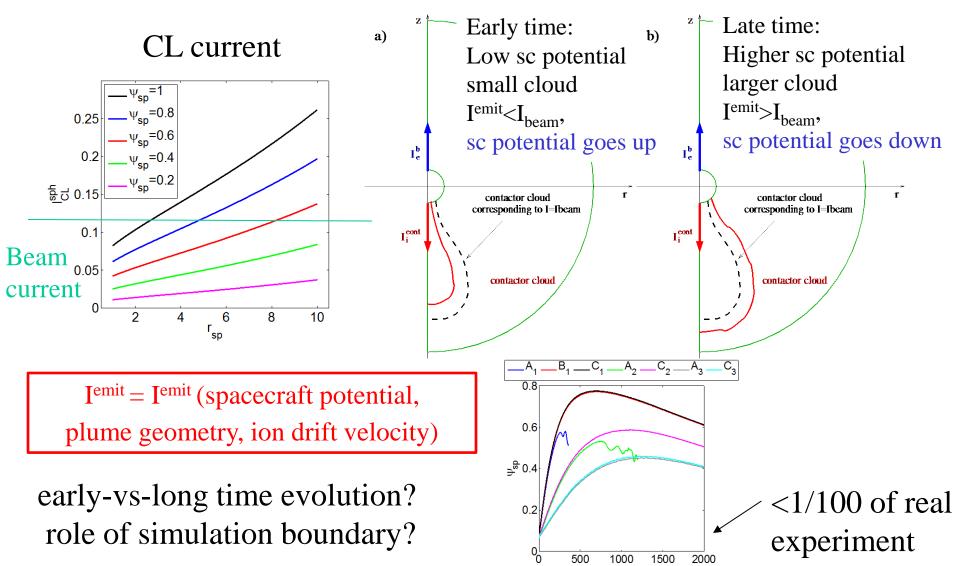
A mitigation strategy based on plasma contactor as electron collector ...


Plasma contactor: provides a high density plasma reservoir

... would not work!

$$I_b/I_{cont}=2$$

- PIC simulations: contactor, spacecraft and beam
- Contactor fired before beam
 - 3 initial configurations with different size of contactor cloud
- Fire electron beam
 - with contactor on
- Contactor fails to draw a large current from background



- G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, E.A. MacDonald, *Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?*, Journal of Geophysical Research, 120 (5), 3647 (2015)
- G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes, Journal of Geophysical Research, 120 (5), 3588 (2015)

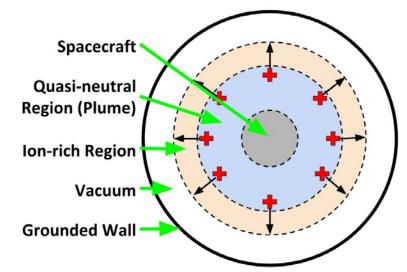
In a different parameter regime, I_b/I_{cont} <1, the beam can be emitted

The contactor can be used to emit ions (and not to collect electrons!)

Interpretation in terms of Child-Langmuir (CL) law in spherical geometry

A simple semi-analytical model for the transient of the sc potential in response to e-beam emission has been developed

Main assumptions of the model:


- Perfect spherical symmetry → 1D
- Focus on contactor ion dynamics → slow
 → I_b=I_i, I_e=0
- e-beam leaves system instantaneously

Model's parameters

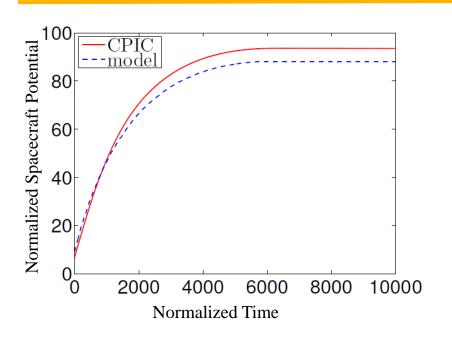
- Radius of the quasi-neutral cloud, \hat{r}_{qn} : If $I_i = I_b$ the plasma electron current is zero and \hat{r}_{qn} is constant

$$\hat{r}_{qn} = \hat{r}_{qn,0}$$

- Radius of the ion front, \hat{r}_i
- Potential of the ion front, ψ_i
- Spacecraft potential, ψ_{sc}

Sc initially emits only a neutral contactor plasma. After some time, it also emits an e-beam

Runs in secs/minutes on laptop vs weeks of PIC on IC clusters


Model summary

Model:

$$\begin{split} -\hat{r}_{qn} &= \hat{r}_{qn,0} \\ -\frac{\mathrm{d}^2\hat{r}_i}{\mathrm{d}\tau^2} &= \frac{m_i}{m_e} \frac{\mathcal{Q}_0 + \hat{I}_b\tau}{4\pi\hat{r}_i^2} \\ -\psi_i &= \frac{\mathcal{Q}_0 + \hat{I}_b\tau}{4\pi} \frac{\hat{r}_2 - \hat{r}_i}{\hat{r}_2\hat{r}_i} \\ -\frac{1}{\hat{r}^2} \frac{\mathrm{d}}{\mathrm{d}\hat{r}} \left(\hat{r}^2 \frac{\mathrm{d}\psi}{\mathrm{d}\hat{r}} \right) &= \hat{J}_{qn,e}f(\hat{r},\psi_{sc}) - \frac{\hat{I}_i}{4\pi\hat{v}_d\hat{r}^2} \left(1 + \frac{\psi_{sc} - \psi}{\mathcal{K}_i} \right) \\ \psi(\hat{r}_i) &= \psi_i \\ \mathrm{d}\psi/\mathrm{d}\hat{r}|_{\hat{r}=\hat{r}_{qn}} &= 0 &\longleftarrow \text{c.f. Child-Langmuir law} \end{split}$$

Initial conditions taken from PIC, we need to define $r_{qn,0},\,r_{i,0},\,v_{i,0}$ and \mathcal{Q}_0

Good agreement between model and simulations

Quantity	Symbol	NORM	REF	DIM	Unit
Spacecraft radius	\hat{r}_1	8.9	2.4e-3	1	m
Outer radius	\hat{r}_2	890	2.4e-3	100	\mathbf{m}
Injection area	$\mathcal A$	995	1.2e-2	12.7	m^2
Electron temperature	\hat{T}_e	1	2.3	2.3	eV
Ion temperature	$\hat{T_i}$	0.2	2.3	0.5	eV
Electron thermal velocity	$\hat{v}_{th,e}$	1	640	640	$\mathrm{km/s}$
Ion thermal velocity	$\hat{v}_{th,i}$	5.4e-3	640	3.4	$\mathrm{km/s}$
Ion drift velocity	\hat{v}_d	5.5e-2	640	35	$\mathrm{km/s}$
Electron current	\hat{I}_e	560	1.3e-2	7.2	mA
Ion current	\hat{I}_i	77.6	1.3e-2	1	mA
Beam current	\hat{I}_b	77.6	1.3e-2	1	mA
Contactor expansion time	$ au_c$	1.5e3	1.8e-7	0.3	ms
Beam emission time	$ au_b$	1e4	1.8e-7	1.8	ms

- To mimic conditions in space, we let the outer boundary $r_2 \rightarrow \infty$.
- If we assume to emit the beam for 0.5 s (τ = 2.5 · 10⁶) the spacecraft would charge the spacecraft to a potential of 700 V (ψ_{sc} = 315).
- Taking into account that the expansion is not radial (via PIC simulations) leads to 1.1 kV, much smaller than the beam energy for a relativistic beam!
- The beam would be easily emitted. This is a major result for CONNEX!

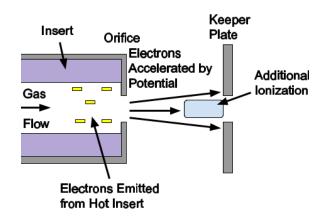
Experimental design: testing ongoing at U. Michigan

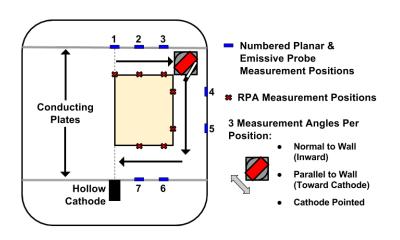
Large Vacuum Test Facility (LVTF)
6 meter x 9 meter cylinder
Largest of its kind in academia

Cathode Test Facility (CTF)
0.7 meter x 1.5 meter cylinder
Cost effective and good availability

Objective: laboratory validation of contactor-based ion emission I^{emit}=I^{emit} (spacecraft potential, plume geometry, ion injection velocity)

Team: G. Miars, O. Leon, B. Gilchrist


Experimental results summary


 Extensive measurements solidify and extend interpretation of the ion emission model

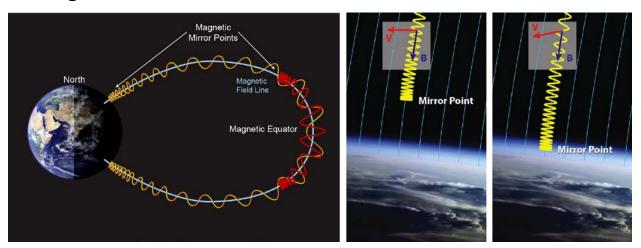
I^{emit} = I^{emit} (spacecraft potential, plume geometry, ion drift velocity)

- Ion emission from quasi-neutral plasma appears space-charge-limited
- Discrepancy attributed to fast electrons

	Measured	Theoretical/		
Position	Emission	Measured		
	(nA)	Emission		
1	50	66.0		
2	210	13.8		
3	270	5.2		
4	430	1.2		
5	290	0.7		
6	240	0.5		
7	320	1.2		

Other challenges

- A. Beam propagation. POC: Ennio Sanchez, SRI, ennio.sanchez@sri.com
 - Modification of the loss cone for relativistic electrons
 - Ballistic propagation to the ionosphere
- B. Beam deposition. POC: Bob Marshall, UCo, Robert.Marshall@colorado.edu
 - How much energy can be deposited in the atmosphere? Needs ~10 kW
 - Prediction of generated signal
 - Prediction of ground detection performance (optical and radar)
 - Indicates that the beam spot is detectable
- C. Accelerator maturation. POC: Dinh Nguyen, LANL, dcnguyen@lanl.gov
 - Successfully demonstrated 20 keV energy gain in single cavity
 - Building/testing 10 cavity prototype by summer 2018 (LANL/SLAC)


We are making progress in mitigating all these challenges!

CONNEX PI: Eric Dors, LANL, edors@lanl.gov

e-beam could be used for radiation-beltremediation

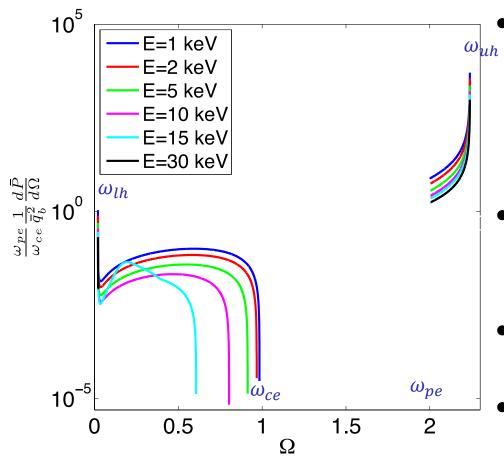
e-beams could be used for radiation belt remediation

- Natural radiation belt: MeV
- Gyro, bounce and drift motion
- Artificial radiation belt. Remediation
- Wave-particle interaction (pitch-angle scattering) to precipitate energetic particles
- Use e-beams to stimulate wave emission
 - Cherenkov or cyclotron emission
 - Beam-plasma instabilities

In the following we will take a look at Cherenkov (mostly) radiation theory

Radiation theory: pulsed beam aligned to B

- Developed in the 60s [McKenzie, 63; Mansfield, 67; Harker&Banks, 84+]
- Beam point pulses act as a current source
- Plasma responds with characteristic frequencies driven by resonances
 - Resonance $\omega = k_{\parallel} V_p$
 - Linear response: cold plasma theory
- Radiated power


$$P(t) = \sum_{j=1}^{N_p} \sum_{p=1}^{N_p} \frac{q^2 V_j}{4\pi \varepsilon_0 c^2} \int d\omega |\omega| \exp\left[i\frac{\omega}{V_p} (z_{p0} - z_{j0})\right] \exp\left[i\omega \left(1 - \frac{V_j}{V_p}\right) t\right] \frac{\sum_{l=1}^{2} (-1)^l T_{33}(n_l)}{\varepsilon_1 (n_2^2 - n_1^2)}$$

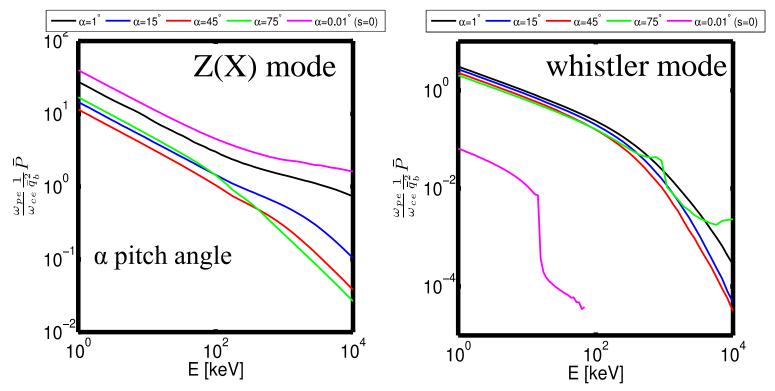
Spatial coherence

Temporal coherence

Farrell&Goertz 90 Harker&Banks 84, ...

Two coupling regimes

$$\Omega = \frac{\omega}{\omega_{ce}}$$
 $P \propto \int \frac{d\bar{P}}{d\Omega} d\Omega$


Whistler and X modes

- Whistler energy-range is limited
- Space nomenclature:
 X→slow Z
- Resonances
 - Lower-hybrid frequency
 - Upper-hybrid frequency
- Yields logarithmic singularities for field-aligned beam
 - The total power diverges

$$\omega_{\rm pe}/\omega_{\rm ce}=2$$
, $m_{\rm i}/m_{\rm e}=1836$

Finite pitch angle yields finite total radiated power

- Several mechanisms can yield a finite radiated power:
 - Finite pitch angle, nonlinearities, kinetic physics, collisions ...
 - Finite pitch angle: resonances are still present, but are now integrable

Can we really trust total radiated power with finite pitch angle? In general NO!

Cold-plasma theory breaks down at resonances. Need simulations!

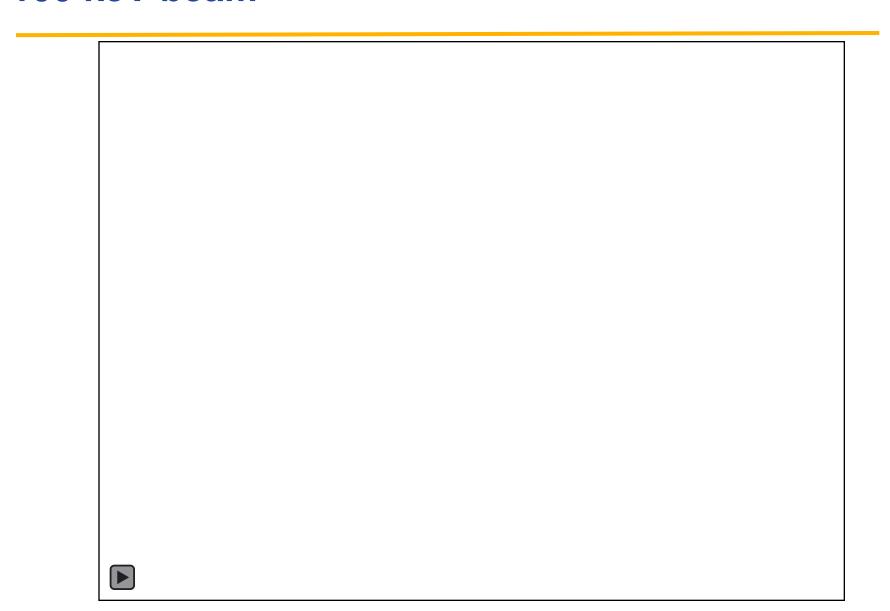
Simulations

• SpectralPlasmaSolver (SPS): solves kinetic equations with spectral expansion of the distribution function in moments [Delzanno, JCP 15; Vencels et al, J. Physics 16]

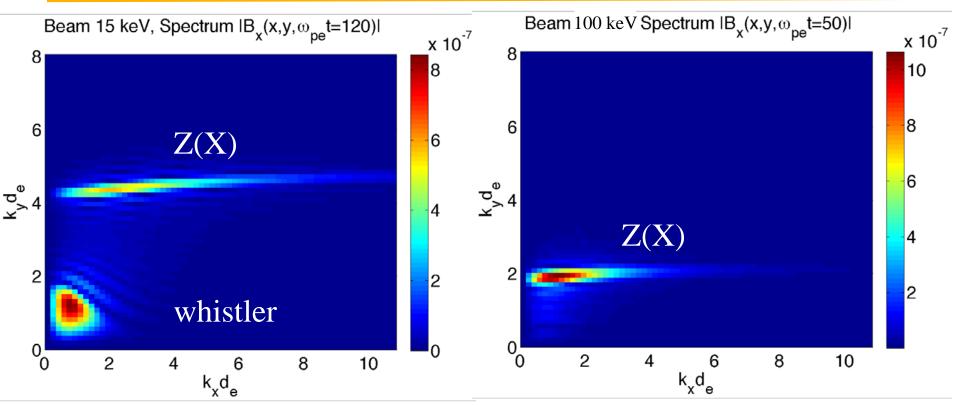
$$f_s(x, v, t) = \sum_{n=0}^{N_H - 1} \sum_{k=-N}^{N} C_{n,k}^s(t) \Psi_n(\xi_s) \Phi_k(x)$$

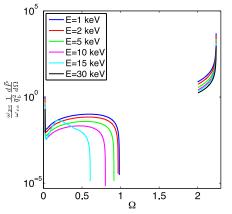
- Velocity discretization: Hermite or Legendre
- Spatial discretization: Fourier or Finite Elements
- Fully-implicit time discretization
- Naturally bridges between fluid (few number of moments) and kinetic (large number of moments). Optimal way to include microscopic physics in large-scale simulations (?)
- To test radiation theory:
 - Stop expansion at 4 Hermite modes: fluid treatment
 - Consider low beta: cold plasma
 - Regularization of resonances achieved by non-linear effects

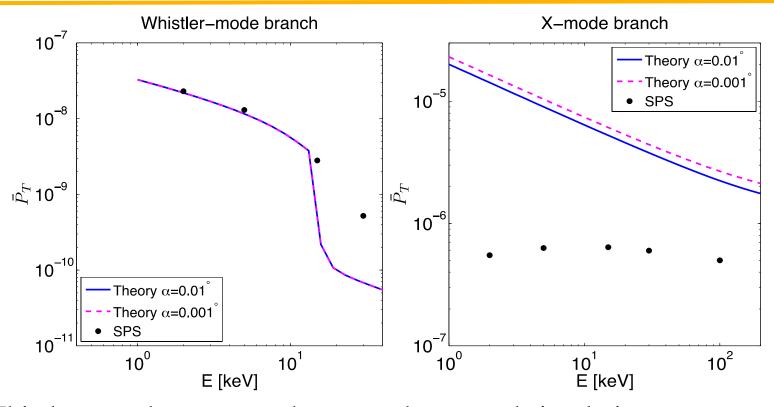
SPS simulations (used as a 2-fluid solver)


 $\omega_{\rm pe}/\omega_{\rm ce}=2, \ m_{\rm i}/m_{\rm e}=1836, \ \beta_{\parallel e}=10^{-4}, \ T_{\parallel e}/T_{\perp e}=1, \ T_{\rm e}/T_{\rm i}=1$

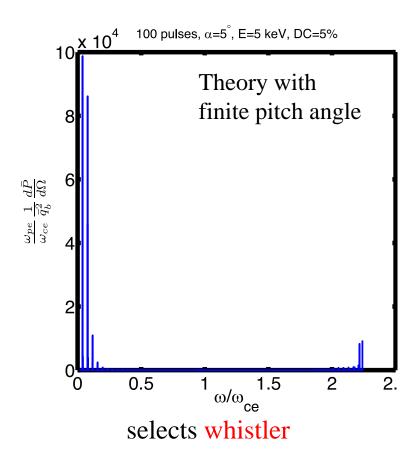
Point pulse

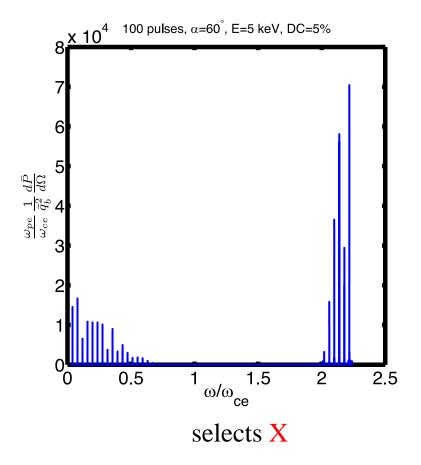

SPS more efficient than PIC (statistical noise!)


100 keV beam


Spectra: 15 keV and 100 keV

Small amplitude for large $k_x=k_{\perp}$ Theory might overestimate radiated power


Total radiated power

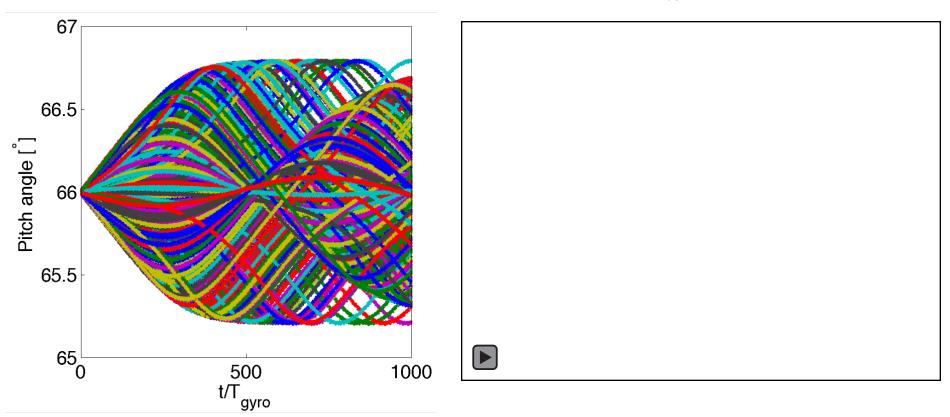

- Whistler: good agreement between theory and simulations
 - Contribution around resonance not important
- Z(X)-mode: theory overestimates radiated power
- Simulations confirm that Z(X) mode dominates radiation (20-100 higher)
 - Many rocket/shuttle experiments focused on whistler

Coherence effects are important: beam modulation or pitch angle allow one to select between the 2 regimes

Minipulse: $T_{mini}=1 \mu s$. $V_{beam}T_{mini}=71 m$

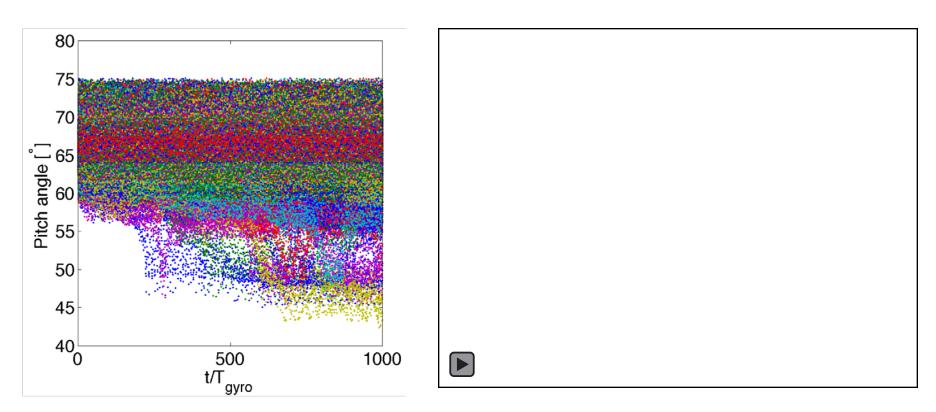
100 pulses suitably separated 5 kHz modulation

Wave-particle interaction

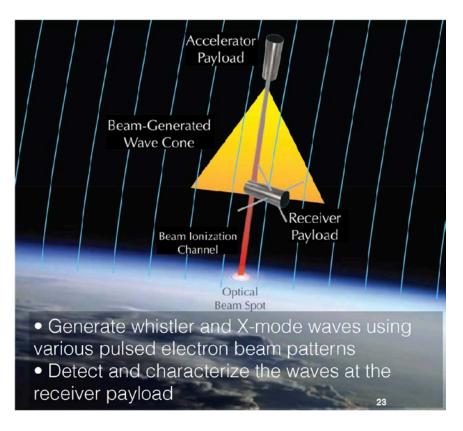

- Test particle simulations in a prescribed wave field
- Single, monochromatic wave: fix B_{rms} =60 nT, use cold-plasma theory to fix other amplitudes. Fix background B_z =45,000 nT
- Objective: reduce pitch angle by 3 deg to induce precipitation
 - Particles lost in the atmosphere (100 km) have pitch angles 66° at 500 km and 61° at 700 km
 - Particles mirroring at 200 km have pitch angles 69° at 500 km and 64° at 700 km
- Move 500 electrons with given initial energy and pitch angle, and random initial position and gyro-phase
- For a given pitch angle, energy is computed from the first cyclotron resonance:

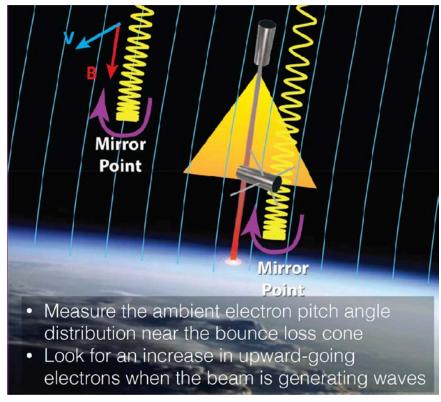
$$\omega - k_{||}v_{||} = \frac{\omega_{ce}}{\gamma}$$
beam Background particle

Whistler mode:


$$E(0)=3.7 \text{ MeV}; \alpha(0)=66^{\circ}; \omega=0.045\omega_{ce}$$

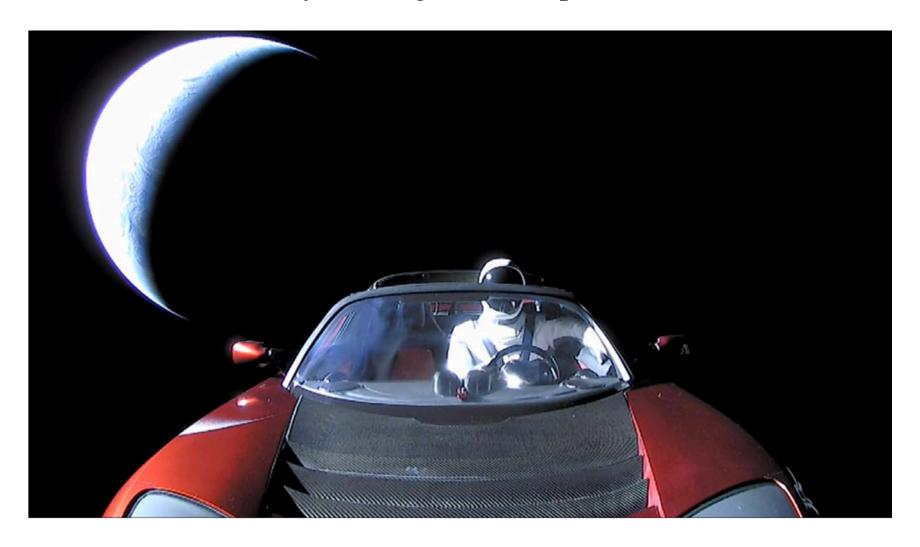
With these parameters, can't get 3 deg changes in pitch angle necessary for precipitation


Z(X) mode:


E(0)=31 keV; α(0)=66°;
$$ω$$
=2.2 $ω$ _{ce}

With these parameters, 20% of the particles experience a change in PA greater than 3 deg in the right direction

Beam Plasma-Interaction Experiment (Beam PIE)



+ Raise TRL on accelerator

LCAS proposal selected last week!

V. Conclusions

It's a very exciting time for space research!

Teams

CONNEX:

LANL: E. Dors (PI), G. Reeves, G.L. Delzanno, M. Henderson, B. Carlsten, D. Nguyen, J. Lewellen

GSFC: E.A. MacDonald, L. Kepko

SLAC: J. Neilson

U. Calgary: E. Spanswick, E. Donovan

U. Colorado: R. Marshall

U. Michigan: B. Gilchrist

U. New Hampshire: H. Vaith

SRI: E. Sanchez

SSI: J.E. Borovsky

PSI: M.F. Thomsen

Beam PIE:

LANL: G. Reeves (PI), G.L. Delzanno, B. Carlsten, D. Nguyen, J. Lewellen, P. Fernandez, M. Holloway

GSFC: R. Pfaff, W. Farrell, D. Rowland, M. Samara

U. Calgary: E. Spanswick, E. Donovan

SRI: E. Sanchez

SSI: J.E. Borovsky