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come temporarily to believe.”



Overview

• Background

• A few successes:

• Nature of ion thermal transport: stiff

• Electron-gyroradius-scale fluctuations are interesting

• Multiscale algorithm developed for coupled turbulence and transport

• Gyrokinetic entropy cascade (perp phase-mixing)

• Gyrofluid revival?  1000x speedup in first-principles modeling

• Identification of Alfvenic solar wind turbulence

• Conclusion
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the (self-consistent and/or imposed) magnetic field:  leads to rapid gyration.

Take advantage of this, and work out asymptotically rigorous equations that 
describe all dynamics slower than the gyration:  theory is known as 
“gyrokinetics”.

Two approaches:  (1) conventional multiscale  (2) Lie transform techniques
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� ≡ ω

Ωc
, Ωc ≡

qB

mc
.

Identify relevant physics at each order in epsilon (gyration, turbulence, 
thermodynamics) taking place at different space and time scales.

New qualitative features:  for processes that are slow compared to the 
gyration, equations are reduced in dimensionality (from 6 to 5) but are 
integro-differential.

Conceptually, particles are replaced by rings whose radii are time-varying.

Interesting turbulent phenomena exist with eddies both large and small, 
compared to a typical “gyroradius”.   Challenging to study!



Basic idea:  Asymptotic, multiscale expansion

             :  Not described

             :  Point particles replaced by finite-sized “rings”

             :  Small scale dynamics (instabilities and fluctuations)

             :  Large scales slowly evolving

             :  Large scale moments close;  no small-scale parallel nonlinearity

             :  Guiding center defined w/ this accuracy;  limits field variation

             :  Perp scales smaller than a gyroradius treated faithfully

             :  Perp scales comparable to gyroradius “most natural” for theory

             :  Parallel scales of fluctuations comparable to equilibrium lengths

             :  Averaged quantities on large perp scales evolve slowly

ω > Ω

ω = Ω
ω ∼ �Ω
ω ∼ �3Ω

∆ < ρ

∆ ∼ ρ

∆ ∼ ρ/�

ν ∼ �3/2Ω

∆ ∼ �ρ

� ∼ ρ/�



Gyrokinetic physics:  Gyration + streaming + drifts

Highly anisotropic, 
because particles stream 
freely along the magnetic 
field lines.

Plane perpendicular to 
magnetic field is special.

Self-consistent currents 
and fields.

E x B drift, flexing, 
stretching and tearing of 
field lines, included.

GK describes field 
perturbations larger and 
smaller than the gyration 
radii.



Applications of gyrokinetics



Selected highlights

1. At high T, tokamak temperature profiles are stiff.  ITG dominant

2. ETG turbulence can also be important, esp. when ITG is suppressed

3. Coupled turbulence/transport algorithm developed

4. Entropy cascade, turbulent heating

5. Gyrofluid revival?  Fantastic GPU/CPU opportunity

6. Identification of solar wind fluctuations associated with Alfvenic cascade



At high temperature, transport is stiff
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Offset-linear implies fast pulse propagation
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First successful transport V&V from first principles

1995



Observation of ETG fluctuations on NSTX

Recently, fluctuations predicted 
to be important (using continu-
um gyrokinetic simulations) 
were observed in NSTX (PRL, 
101, 075001, 2008).
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ETG fluctuations potentially interesting

Recently, fluctuations predicted 
to be important (using continu-
um gyrokinetic simulations) 
were observed in NSTX (PRL, 
101, 075001, 2008).

Without mass rescaling, ETG 
can be 15x larger.

Implies ETG transport is weaker 
than ITG, but potentially 
important when long wavelength 
turbulence is stabilized.

1998-2002



Stiffness of ETG varies; variation understood

Recently, fluctuations predicted 
to be important (using continu-
um gyrokinetic simulations) 
were observed in NSTX (PRL, 
101, 075001, 2008).

Without mass rescaling, ETG 
can be 15x larger.

Implies ETG transport is weaker 
than ITG, but potentially 
important when long wavelength 
turbulence is stabilized.

ETG stiffness varies strongly, 
understood theoretically (2002)



Coupled turbulence/transport algorithm (Barnes)



Direct simulation cost 
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•! Grid spacings in space (3D), velocity (2D) and time: 

•! Grid points required: 

•! Factor of ~1010 more than largest fluid turbulence 
calculations 

•! Direct simulation not possible; need physics guidance 

Tim
e 



Improved simulation cost 

•! Field-aligned coordinates take advantage of                                       
a              :  savings of ~1000 

•! Statistical periodicity in poloidal direction takes 
advantage of                  : savings of ~100 

•! Total saving of ~105 

•! Factor of ~105 more than largest fluid turbulence 
calculations 

•! Simulation still not possible; need multiscale 
approach 



Key results: turbulence and transport 

(Boltzmann Eqn for short wavelength, mid-frequency turbulence) 

1-D transport for slow background evolution depends on fluxes 

(and sources, not shown) 



Multiscale grid 
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•! Small regions of fine grid (for 
turbulence) embedded in “coarse” 
radial grid (for equilibrium) 

•! Turbulent fluxes and heating in 
small regions calculated using flux 
tubes (equivalent to flux surfaces) 

•! Flux tubes = radial grid points in 
large-scale transport equations 

Flux tube spatial simulation  

domain for microturbulence 

Flux tube temporal simulation 

domain for microturbulence 

•! Small regions of fine grid (for 
turbulence) embedded in “coarse” 
time grid (for equilibrium) 

•! Steady-state (time-averaged) 
turbulent fluxes and heating in this 
volume simulated using flux tubes 

•! Flux tube sim = time grid point in 
long-time transport equations  



Flux tubes minimize flux surface grid points 

Image of MAST simulation courtesty of G. Stantchev  



Multiscale simulation cost 

•! Grid spacings in radius and velocity (2D) roughly 
unchanged 

•! Major savings is in time domain: 

•! Required number of grid points: 

•! Savings of ~103 over conventional numerical simulation 

Coarse space-time grid 
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New topic in plasma turbulence

• Entropy cascade -- a newly discovered mechanism for turbulent plasma 
heating.



The cascade of entropy

• Energy and enstrophy cascades are well-known in 2D and 3D fluid 
turbulence.

• We have recently identified a new phenomenon which occurs in weakly 
collisional, magnetized plasma: the cascade of entropy.  

• Before describing the new phenomenon, let’s review the simplest picture 
of the energy cascade in fluid turbulence...

Ek

k

stir
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Dimensional Kolmogorov ’41 argument for p

• Assume energy transfer is local in wavenumber, and the rate of energy 
transfer is constant through the inertial range

ε ≡ Energy
time

Energy ∼ v2, time ∼ �

v
=

1
kv

At each k:

Therefore: ε ∼ kv3 = const→ v ∝ k−1/3

Square the velocity and make it 
a spectral density of energy by 
dividing by k; result is p = 5/3

Ek

k

stir

Inertial range damp

Kinetic 
energy

per
wavenumber

Wavenumber

∝ k−p



First step: Identify the conserved quantity[ies]

• In the inertial range, there is no stirring or damping.

• In this limit, it can be shown that the GK equations conserve

• Here, T0 is the temperature, F0  is the slowly varying part of the 
distribution function for species s, and the fluctuating quantities 
are indicated with deltas.

• It can also be shown that this conserved quantity reduces to 
the appropriate values in various limits, such as the fluid MHD 
limit 

• It is this quantity that will be cascaded.  Why do we talk about 
an entropy cascade?

E =
�

d3x

V

��
d3v

�

s

�
T0δf2

2F0

�
+

(δB)2

8π

�



Not quite entropy, but...

• Recall the definition of entropy: 

• Here, the integration variable includes the space and velocity-space 
coordinates, kB is Boltzmann’s constant (taken to be unity from now), and 
the quantity f is the probability distribution function from kinetic theory.

• Upon expanding f = f0 + f1, and using spatial homogeneity to eliminate 
integrals over single powers of f1, one finds 

• The quantity conserved by GK is a combination of magnetic field energy 
and S2, the second-order correction to the entropy.   Hallatschek identifies 
the conserved quantity in terms of thermodynamic potentials (PRL, 2004).

S = −kB

�
f ln (f)dΓ

S0 ∝
�

f0 ln (f0)dΓ S1 = 0 S2 ∝
�

f2
1

f0
dΓ



Predicted spectrum of ES entropy fluctuations

• Proceeding as before, define constant entropy flux, epsilon = Entropy/time

• Entropy ~ f 2  and time

• Complication: calculate self-consistent electric field scale by scale.  Not 
easy!  Use the physical intuition that v-space decorrelation              ,           
and solve Poisson’s equation to find the electrostatic potential:

• Put this all together, to find 

• These scaling correspond to spectra for the non-Boltzman part of the 
entropy and the electrostatic potential as follows:

τ ∼ �/ <vE > ∼
�

(ρ/�) �2/φ�

�v ∼ �

φ� ∼ f��

f� ∼ �1/6 φ� ∼ �7/6

Wh(k⊥) ∼ k−4/3
⊥ , Wφ ∼ k−10/3

⊥



Numerical results consistent with expectations (Tatsuno)

Shown: three sims 
with increasing 
resolution

Decaying turbulence; 
will return to 
dissipation physics in 
a moment

Slopes generally 
consistent with 
estimated values

These are large runs 
-- thousands of 
processors on largest 
computers in US
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Contours of f(v) at driving scale

This is a 
Maxwellian.  There 
is no interesting 
structure in f(v).

What happens to 
f(v) at higher 
wavenumbers?-0.5
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Reduce spatial scale 5x, see structure
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perturbed 
distribution 
function in the 
perpendicular 
velocity direction.



Further reduce spatial scale, see more structure in f(v)
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Rate of structure 
formation is 
independent of 
collisions.

In the absence of 
collisions, could run 
time backwards and 
structure would 
disappear.  

Collisions give 
irreversibility and 
heating -- with rate 
independent of    ! ν



Small-angle collisions smooth v-space structure

• Give diffusion in v (second derivative in v-space)

• Important to have H-theorem for GK system (see PhD thesis of Barnes)

• Smoothing corresponds precisely to heating (Howes, 2008)

• Heating by nonlinear phase mixing is independent of collision frequency!  
And proportional to amplitude!  Something fundamental and new -- missed 
by Landau.

• Scale at which irreversibility sets in given by balancing collisional smoothing 
against cascade to smaller scales:

δv⊥,c

vth
∼ 1

k⊥,cρ
∼ D−3/5,where D ≡ 1

ντρ
.



Summary of perpendicular entropy cascade

• Particles with coincident gyrocenters but different gyroradii respond 
differently to the same electric fields, and contribute to the self-consistent 
fields differently.

• This leads to simultaneous structure formation at small scales in x and v.

• Even very infrequent collisions finally smooth f(v), resulting in irreversibility 
and turbulent heating, independent of the (finite) value of the collision 
frequency.  Only the scale at which the heating occurs is affected by the 
specific value of the collision frequency -- not the rate of heating.

• (Note that the generation of small spatial scales alone would not result in 
heating in such weakly collisional gases -- collisional viscosity is irrelevant.)

• This source of heat may be important in a variety of contexts, such as in 
the case of the solar wind and in laboratory fusion experiments.

• Unlike Landau damping, this heating rate is amplitude dependent.



Gyrofluid revival?  Fantastic opportunity

Inclusion of this physics brings GF into agreement with GK!

GF + GPU = Potential Trinity speedup of 1000x.  Stunning.



Applications of gyrokinetics:  Nature

The solar wind is a pressure-
driven, outward flow of 
plasma from the sun.  

The pressure should drop as 
the plasma expands, and the 
flow should stagnate.

Why doesn’t this happen?  
Perhaps turbulent heating -- 
in this case, gyrokinetic 
turbulent heating.

What we learn from solar 
wind may be applied to 
astrophysical systems.
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Fluctuations in the solar wind

Fluctuations measured by 
Bale, et al., (2005).

At large wavenumbers, 
power spectra of electric 
and magnetic fields 
diverge.  

Gyrokinetic simulations 
by Howes, et al., (2010)

At large wavenumbers, 
power spectra of electric 
and magnetic fields 
diverge, in agreement 
with theory of kinetic 
Alfven wave turbulence.



Conclusions

• Weakly collisional, magnetized plasma turbulence is important in a variety 
of contexts:  fusion experiments, pressure-driven outflows

• A few results: 

• Ion temperature profiles are stiff

• Electron-gyroradius scale turbulence is interesting

• First-principles transport modeling available now

• Entropy cascade occurs on scales smaller than gyroradius

• Electromagnetic fluctuation spectra in solar wind shown to be 
consistent with theoretical and numerical expectations, based on 
transition from Alfvenic to KAW turbulence.



The End


