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Overview

Background

A few successes:

Nature of ion thermal transport: stiff

Electron-gyroradius-scale fluctuations are interesting

Multiscale algorithm developed for coupled turbulence and transport
Gyrokinetic entropy cascade (perp phase-mixing)

Gyrofluid revival? 1000x speedup in first-principles modeling
|dentification of Alfvenic solar wind turbulence

Conclusion
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EM fields Two-patrticle collisions

Boltzmann equation + Maxwell’s equations = kitchen sink

Very frequently, the largest term in the equation is the acceleration due to
the (self-consistent and/or imposed) magnetic field: leads to rapid gyration.

Take advantage of this, and work out asymptotically rigorous equations that
describe all dynamics slower than the gyration: theory is known as
“gyrokinetics”.

Two approaches: (1) conventional multiscale (2) Lie transform techniques
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Basic idea: Asymptotic, multiscale expansion

Expand Boltzmann and Maxwell equations in powers of epsilon, where

|dentify relevant physics at each order in epsilon (gyration, turbulence,
thermodynamics) taking place at different space and time scales.

New qualitative features: for processes that are slow compared to the
gyration, equations are reduced in dimensionality (from 6 to 5) but are
integro-differential.

Conceptually, particles are replaced by rings whose radii are time-varying.

Interesting turbulent phenomena exist with eddies both large and small,
compared to a typical “gyroradius”. Challenging to study!



Basic idea: Asymptotic, multiscale expansion

w > () : Not described
w = () : Point particles replaced by finite-sized “rings”
w ~ €{) : Small scale dynamics (instabilities and fluctuations)
w ~ €§) : Large scales slowly evolving
v ~ e3/2Q) : Large scale moments close; no small-scale parallel nonlinearity
A ~ €p : Guiding center defined w/ this accuracy; limits field variation
A < p : Perp scales smaller than a gyroradius treated faithfully
A ~ p : Perp scales comparable to gyroradius “most natural” for theory
¢ ~ p/€ : Parallel scales of fluctuations comparable to equilibrium lengths

A ~ p/€ : Averaged quantities on large perp scales evolve slowly



Gyrokinetic physics: Gyration + streaming + drifts

Highly anisotropic,
because particles stream
freely along the magnetic
field lines.

Plane perpendicular to
magnetic field is special.

Self-consistent currents
and fields.

E x B drift, flexing,
stretching and tearing of
field lines, included.

GK describes field
perturbations larger and
smaller than the gyration
radii.




Applications of gyrokinetics




S

Selected highlights

. At high T, tokamak temperature profiles are stiff. ITG dominant

ETG turbulence can also be important, esp. when ITG is suppressed
Coupled turbulence/transport algorithm developed

Entropy cascade, turbulent heating

Gyrofluid revival? Fantastic GPU/CPU opportunity

ldentification of solar wind fluctuations associated with Alfvenic cascade



At high temperature, transport is stiff
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Offset-linear implies fast pulse propagation
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First successful transport V&V from first principles
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Observation of ETG fluctuations on NSTX

Recently, fluctuations predicted
to be important (using continu-
um gyrokinetic simulations)

were observed in NSTX (PRL
101,075001,2008).




Observation of ETG fluctuations on NSTX

Recently, fluctuations predicted
to be important (using continu-
um gyrokinetic simulations)

were observed in NSTX (PRL
101,075001, 2008).




ETG fluctuations potentially interesting

Normalized transport coefficients

500 1000
time (L./v,)

Recently, fluctuations predicted
to be important (using continu-
um gyrokinetic simulations)

were observed in NSTX (PRL
101,075001, 2008).

Without mass rescaling, ETG
can be |5x larger.

Implies ETG transport is weaker
than ITG, but potentially
important when long wavelength
turbulence is stabilized.

1998-2002



Stiffness of ET G varies; variation understood
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Recently, fluctuations predicted
to be important (using continu-
um gyrokinetic simulations)

were observed in NSTX (PRL
101,075001, 2008).

Without mass rescaling, ETG
can be |5x larger.

Implies ETG transport is weaker
than ITG, but potentially
important when long wavelength
turbulence is stabilized.

ETG stiffness varies strongly,
understood theoretically (2002)



Coupled turbulence/transport algorithm (Barnes)
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Direct simulation cost

e Grid spacings in space (3D), velocity (2D) and time:
Ax ~ 0.001 em, L, ~ 100 cm
Av ~ 0.1 Uth, Lv ~ Uth

At~10""s, L;~1s

e Grid points required:
(Ly/Az)3 x (L, /Av)? x (Ly/At) ~ 10%4

e Factor of ~10'9 more than largest fluid turbulence
calculations

 Direct simulation not possible; nheed physics guidance



Improved simulation cost

Field-aligned coordinates take advantage of
k) < k1: savings of ~1000

NeliNilefe] periodi_cli’ry In poloidal direction takes
advantage of k1~ < Lg : savings of ~100

Total saving of ~10°

Factor of ~10° more than largest fluid furbulence
calculations

Simulation still not possible; need multiscale
approach



Key results: turbulence and transport
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(Boltzmann Eqn for short wavelength, mid-frequency turbulence)
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1-D transport for slow background evolution depends on fluxes
(and sources, not shown)



Multiscale grid

Flux tube spatial simulation
domain for microturbulence

 Smallregions of fine grid (for
turbulence) embedded in “coarse”
radial grid (for equilibrium)

e Turbulent fluxes and heating in
small regions calculated using flux
tubes (equivalent to flux surfaces)

e Flux tubes = radial grid points in
large-scale fransport equations

 Smallregions of fine grid (for
turbulence) embedded in “coarse”
time grid (for equilibrium)

e Steady-state (time-averaged)

turbulent fluxes and heafting in this
volume simulated using flux tubes

* Flux tube sim = time grid point in
long-tfime transport equations
Flux tube temporal simulation
domain for microturbulence




Flux fubbes minimize flux surface grid points

Image of MAST simulation courtesty of G. Stantchev



Multiscale simulation cost

e Grid spacings in radius and velocity (2D) roughly
unchanged

Coarse space-time grid

e Major savings is in time domain:
Turbulence: At ~ 107" s, L, ~107% s

Transport: A7 ~0.1s, L, ~1s

e Required number of grid points:

(Ly/AT) x (Lg/A8) x (Ly/Ad) x (Ly/Av)? x (Ls/At) x (Ly/AT) ~ 101

e Savings of ~103 over conventional numerical simulation



New topic in plasma turbulence

* Entropy cascade -- a newly discovered mechanism for turbulent plasma
heating.



The cascade of entropy

Energy and enstrophy cascades are well-known in 2D and 3D fluid
turbulence.

We have recently identified a new phenomenon which occurs in weakly
collisional, magnetized plasma: the cascade of entropy.

* Before describing the new phenomenon, let’s review the simplest picture
of the energy cascade in fluid turbulence...

B
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Dimensional Kolmogorov 41 argument for p

* Assume energy transfer is local in wavenumber, and the rate of energy

transfer is constant through the inertial range Energy
—
¢ 1 time
At each k: Energy ~ v?, time ~ — — —
v kv
Therefore: e ~ kv® = const — v o k~1/3

Square the velocity and make it
ox kP a spectral density of energy by
dividing by k; result is p = 5/3

By

Kinetic
energy

per < . >
avernmber Inertial range

Wavenumber /C



First step: Identify the conserved quantity[ies]

* In the inertial range, there is no stirring or damping.

* In this limit, it can be shown that the GK equations conserve

d>x Too 0B)?
/ / 73 Z 00 f? ( )
2F0 ST
* Here, Tp is the temperature, Fo is the slowly varying part of the

distribution function for species s, and the fluctuating quantities
are indicated with deltas.

* |t can also be shown that this conserved quantity reduces to
the appropriate values in various limits, such as the fluid MHD
limit

* |tis this quantity that will be cascaded. Why do we talk about
an entropy cascade!



Not quite entropy, but...

Recall the definition of entropy:

S = —kB/fln(f)dF

Here, the integration variable includes the space and velocity-space
coordinates, kg is Boltzmann’s constant (taken to be unity from now), and
the quantity fis the probability distribution function from kinetic theory.

Upon expanding f = fo + fi, and using spatial homogeneity to eliminate
integrals over single powers of fi, one finds

Soocffoln(fo)dl“ S, =0 Sy o /f1 dT’

The quantity conserved by GK is a combination of magnetic field energy
and S, the second-order correction to the entropy. Hallatschek identifies
the conserved quantity in terms of thermodynamic potentials (PRL, 2004).



Predicted spectrum of ES entropy fluctuations

Proceeding as before, define constant entropy flux, epsilon = Entropy/time
Entropy ~ f2 and time 7 ~ £/ <vg> ~ /(p/0) */ ¢y

Complication: calculate self-consistent electric field scale by scale. Not
easy! Use the physical intuition that v-space decorrelation ¢, ~ ¢,
and solve Poisson’s equation to find the electrostatic potential:

Pp ~ fol

Put this all together, to find

/6 1/6
Jo~ 1 Qg ~ ¥

These scaling correspond to spectra for the non-Boltzman part of the
entropy and the electrostatic potential as follows:

Wi (k) ~ 1{4/3, W, ~ k110/3



Numerical results consistent with expectations (Tatsuno)

Shown: three sims
with increasing
resolution

Decaying turbulence;
will return to
dissipation physics in
a moment

Slopes generally
consistent with
estimated values

These are large runs
-- thousands of
processors on largest
computers in US




Contours of f(v) at driving scale

This is a
Maxwellian. There
IS no interesting
structure in f(v).

What happens to
f(v) at higher
wavenumbers!



Reduce spatial scale 5x, see structure

Begin to see
structure in the
perturbed
distribution
function in the
perpendicular
velocity direction.




Further reduce spatial scale, see more structure in f(v)

Rate of structure
formation is
independent of
collisions.

In the absence of
collisions, could run
time backwards and
structure would
disappear.

Collisions give
irreversibility and
heating -- with rate
independent of /!




Small-angle collisions smooth v-space structure

Give diffusion in v (second derivative in v-space)
Important to have H-theorem for GK system (see PhD thesis of Barnes)
Smoothing corresponds precisely to heating (Howes, 2008)

Heating by nonlinear phase mixing is independent of collision frequency!
And proportional to amplitude! Something fundamental and new -- missed
by Landau.

Scale at which irreversibility sets in given by balancing collisional smoothing
against cascade to smaller scales:

5’UJ_,C 1

1
~ ~ D_3/5, where D = .
Vth KLcp VT,



Summary of perpendicular entropy cascade

Particles with coincident gyrocenters but different gyroradii respond
differently to the same electric fields, and contribute to the self-consistent
fields differently.

This leads to simultaneous structure formation at small scales in x and v.

Even very infrequent collisions finally smooth f(v), resulting in irreversibility
and turbulent heating, independent of the (finite) value of the collision
frequency. Only the scale at which the heating occurs is affected by the
specific value of the collision frequency -- not the rate of heating.

(Note that the generation of small spatial scales alone would not result in
heating in such weakly collisional gases -- collisional viscosity is irrelevant.)

This source of heat may be important in a variety of contexts, such as in
the case of the solar wind and in laboratory fusion experiments.

Unlike Landau damping, this heating rate is amplitude dependent.



Gyrofluid revival? Fantastic opportunity

Cyclone Base Case dpm Scan
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Inclusion of this physics brings GF into agreement with GK!

GF + GPU = Potential Trinity speedup of 1000x. Stunning.



Applications of gyrokinetics: Nature

SOLAR wm[/

MAGNETOSPHERE

The solar wind is a pressure-
driven, outward flow of
plasma from the sun.

The pressure should drop as
the plasma expands, and the
flow should stagnate.

Why doesn’t this happen?
Perhaps turbulent heating --
in this case, gyrokinetic
turbulent heating.

What we learn from solar
wind may be applied to
astrophysical systems.



Fluctuations in the solar wind

Fluctuations measured by
Bale, et al,, (2005).

At small wavenumbers,
power spectra of electric
and magnetic fields both
have slopes ~ k /3

€ inertial subrange —pie KAW?

0.100 1.000
kps




Fluctuations in the solar wind

Fluctuations measured by
| Bale, et al,, (2005).

;Numerical

ISR At small wavenumbers,

: power spectra of electric
and magnetic fields both

have slopes ~ k /3

Gyrokinetic simulations
by Howes, et al., (2008)

At small wavenumbers,
power spectra of electric
and magnetic fields both
have slopes ~ k /3




Fluctuations in the solar wind

Fluctuations measured by
Bale, et al,, (2005).

At large wavenumbers,
power spectra of electric
and magnetic fields
diverge.
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Fluctuations in the solar wind

Fluctuations measured by
Bale, et al,, (2005).

Numerical

At large wavenumbers,
power spectra of electric
and magnetic fields
diverge.

Gyrokinetic simulations
by Howes, et al., (2008)

At large wavenumbers,
power spectra of electric
and magnetic fields
diverge, in agreement
with theory of kinetic
Alfven wave turbulence.
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Fluctuations in the solar wind

Fluctuations measured by
Bale, et al,, (2005).

At large wavenumbers,
power spectra of electric
and magnetic fields
diverge.

Gyrokinetic simulations
by Howes, et al,, (2010)

At large wavenumbers,
power spectra of electric
and magnetic fields
diverge, in agreement
with theory of kinetic
Alfven wave turbulence.




Conclusions

*  Weakly collisional, magnetized plasma turbulence is important in a variety
of contexts: fusion experiments, pressure-driven outflows

* A few results:
* lon temperature profiles are stiff
* Electron-gyroradius scale turbulence is interesting
* First-principles transport modeling available now
* Entropy cascade occurs on scales smaller than gyroradius

* Electromagnetic fluctuation spectra in solar wind shown to be
consistent with theoretical and numerical expectations, based on
transition from Alfvenic to KAW turbulence.



The End




