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Extreme Lasers

LLNL/ELI

Short-pulse (fs) lasers with multi-petawatt peak power. Long-pulse (ps-ns) lasers with up to megajoule energy. Free-electron lasers produce short (fs) intense x rays.
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High-Intensity Lasers: Energy, Power, and Intensity

High-intensity lasers deliver moderate energy (~ 10 J) in very short times (10-# s)
to very small areas (107 cm?), giving extreme intensity (> 1022 W/cm?)

Focusing Short Pulses
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to ~1 wavelength
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Chirped Pulse Amplitication (CPA)

Y5 the 2018 Nobel Prize in Physics was

. . . . awarded to Donna Strickland and Gérard
Avoids damage by stretching pulses in time Mourou for the invention of CPA.
Amplifier

—
Stretched
amplified pulse
Pulse has full final power on
last compression grating. l
Grating
Compressor .
Blue light travels a
shorter path than red
—> . Grating light, compensating
. ______________________4
< ' ‘ for the chirp.
Ultrashort pulses
contain a broad Grating Stretcher

r—

‘

spectrum of light Red light travels a Compressed amplified pulse
shorter path than blue

light, so it emerges first

Stretched (“chirped”) pulse

Grating

To improve overall system performance, we can start by replacing final grating with a
high-damage-threshold optic.



The Challenge of Building High-Peak-Power Lasers

10
® Stanford —_ ELI 10 PW 1 EW Beam
Plasma Optics
NIF (LLNL) x192
BELLA 1 PW (LBNL)
1.2 PW, 20 cm

ZEUS (U. Mich.)
2 PW

1 EW Beam (1018 Watts)
Solid-State Technology
x5 5 cm
®
Laser Pointer 1 kHz Ti:Sapphire Stanford 15 TW
5mW CW 5m] 50 fs (0.1 TW) 35 fs 40 mm diameter




How would you build an exawatt lasere
+ high-repetition-rate (>> kHz) high-peak-power (> 1 PW) systems?

Solid-state limited to <1012 W/cm?

Optical damage sets a minimum size on compression
gratings and post-compression optics.
At 10 W (1 EW), a threshold of 10> W/cm? requires 100 m?

For intensities significantly above 103 W/cm?, we must
use plasma.

Plasmas support far higher light intensities than solids
(103 — 10° X), so optics built from plasmas could allow
compact ultra-high-power lasers.




Plasma and Gas Opfics
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Plasma Waveguides
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non-ideality, and kinetic effects.
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Plasma and Gas Opfics: Requirements

High damage tolerance: If the damage threshold is low,
we might as well use a standard optic

High repetition rate: — Gas (or liquid) targets
Optical quality: — laser shaped plasmas

‘Cheap’ to form: We are not going to get anywhere if
we need a 10 PW laser to make an optic for a 1 PW laser.

Minimized nonlinearity and distortion: The beam
leaving a plasma optic still needs to be usable.

Broad spectrum: Compatible with femtosecond pulses.

Robust and stable: Especially important for pulse
pointing and duration. A challenge for plasmas.
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Today's Approach

Volumetric diffractive plasma optics:
Periodic patterns of plasma act as optical elements

“Plasma gratings” or “Photonic crystals”

Advantages:
* Linear optics (minimal instabilities)

* Optical properties depend on location of plasma more
strongly than density

* Transmissive optics require only gas density plasma

Plasma Transmission Grating

Plasma Diffractive Lens
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Diffractive Opfics

Surface gratings

Volume grating: periodic variation of
refractive index diffracts light with specific

angle and wavelength.
\ Index of

Refraction

Light incident at the Bragg angle will be
etficiently diffracted:

_— Probe wavelength

M
21y

— Grating period (wavelength)

sinfOp =
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Bragg Transmission Grating Efficiency

A Bragg transmission grating can diffract to one order with up to 100% etficiency

Coupling coefficient
Efficien cy / / Grating thickness \ / Index modulation
sin®(xkD 1) Ty

K = :
N 2 Al CcOS QB/ Grating Bragg angle
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Creating a Laser-Driven Transmission Grating
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The interference pattern of two crossed beams has period:

~ 2siné,

A

If we can map intensity to refractive index in a plasma, we
can create a plasma diffractive optic:
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Generalizing 1o Holographic Opfics

Holograms encode a three-dimensional light field of two write beams

Photorefractive
material

Reference write beam Obiject write beam

1. Interference of two
write beams

An
104
i 0
-10
Structured refractive index

2. Mapping intensity to
refractive index

Diffracted Undiffracted

@

O

Incident read beam

3. Diffraction of a
third read beam
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Holographic Optics
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Mechanisms for Plasma and Gas Opftics

lonization

Alternating plasma and neutral gas

it i

Experiment

Ionization occurs in constructive
interference fringes of pumps

Formation: fs-ps
Lifetime: 10-100 ps
Index Modulation: 102

Ponderomotive

lon + electron density fluctuations

ANAANAAANAN
Plasma

Simulation (PIC

Wy awzmnn».’,»m)zzw.w-xe;».*.".-.»\:—,\w-“\;mw::;:—:,:- Matian

Ponderomotively driven electrons
create ion density modulations

Formation: 1-100 ps
Lifetime: 10-100 ps
Index Modulation: 102

Best performance for high-power femtosecond lasers

Suntsov et al. Appl. Phys. Lett. (2009). Edwards et al. Optica (2023).
Durand et al. Phys. Rev. E (2012).
Jarnac et al. Opt. Commun. (2014).

Edwards et al. Phys. Rev. Lett. (2024).

Lehmann et al. Phys. Rev. Lett. (2016).
Peng et al. Phys. Rev. E (2019).
Edwards and Michel Phys. Rev. Appl. (2022).

Gas Heating

Neutral gas density modulations

Diffracted  Undiffracted

Absorption of UV light by ozone leads
to heating and entropy waves

Formation: 1-10 ns
Lifetime: 10-100 ns
Index Modulation: 107>

Best performance for high-
energy nanosecond lasers

Michine and Yoneda, Comm. Phys. (2020).
Michel et al., Phys. Rev. Appl. (2024). 18
Ou et al., Opt. Lett. (2025).



Gas Gratings




Ditfraction Gratings in Ozone Gas

Ultraviolet beams can imprint a periodic temperature modulation in ozone gas.
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Y. Michine & H. Yoneda, Commun. Phys. (2020).

P. Michel et al., Phys. Rev. Applied (2024).

P. Michel et al., Phys. Rev. Applied (2026).

K. Ou et al. “Near-Unity-Efficiency Gas Gratings for Ultraviolet, Visible, and Infrared High-Power Lasers,” arXiv:2601.09963 (2026).
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Ditfraction Gratings in Ozone Gas

The local heating of gas drives a periodic density modulation.
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Y. Michine & H. Yoneda, Commun. Phys. (2020)
P. Michel et al., Phys. Rev. Applied (2024)
K. Ou et al. “Near-Unity-Efficiency Gas Gratings for Ultraviolet, Visible, and Infrared High-Power Lasers,” arXiv:2601.09963 (2026)..
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Ditfraction Gratings in Ozone Gas

A third read beam incident at the Bragg angle will diffract otf the acousto-optic
structure.
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Y. Michine & H. Yoneda, Commun. Phys. (2020)
P. Michel et al., Phys. Rev. Applied (2024)
K. Ou et al. “Near-Unity-Efficiency Gas Gratings for Ultraviolet, Visible, and Infrared High-Power Lasers,” arXiv:2601.09963 (2026).
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Temporal evolution of gas gratings

Pulsed =-Averaged —CW

1
Diffraction efficiency oscillates =
. o
with respect to probe delay. =
<
=
. i A
Grating stays ‘on’ during each
peak for tens of nanoseconds
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3}
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|
0 250 500 750 1000 1250 1500
Oscillation period: Probe Delay (ns)
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K. Ou et al. arXiv:2601.09963 (2026).



Imprint Laser Fluence Requirements

Diffraction efficiency measured
when index modulation peaks.

At low fluences, imprint beams
deplete in ozone.

At high fluences, ozone depletes.

At high fluence and high O,
concentration, beam begins to

diffract back to zeroth order

K. Ou et al. arXiv:2601.09963 (2026).
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Gas Grating Diffraction Efficiency

Grating Off
0.1
y 0 .
-0.1
Grating On
0.1
Yy o 99%| W
0.1
Diffracted Undiffracted
-0.5 0.5

K. Ou et al. arXiv:2601.09963 (2026).
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Grating Off
X (arb. units)

Grating On

Grating Wavelength Insensifivity

1
f—

1
f— f—

X (arb. units)

[E—

o
T

o
T

266 nm (a) 532 nm (b) 800 nm (c) 1064 nm (d)
» . . »
266 nm (e) 532 nm (H) 800 nm (2) 1064 nm (h)
I . -
0 . 0 . 0 . 0 .
y (arb. units) y (arb. units) y (arb. units) y (arb. units)

Gratings operate efficiently across wide range of read beam wavelengths.

K. Ou et al. arXiv:2601.09963 (2026).
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Gas Grating Stability

10 Hz operation for hours

095 is possible.
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Applications to Inertial Fusion Energy

What would an IFE plant look like?
<10 MJ (y1€1d) @1 ShOt/ day (current at NIF) = > 100 M] @ ~10 Hz (required)

The final optic problem:
Can any optic focus lasers on target and withstand
enormous debris, x-ray, neutron, and light fluxes?

Laser entry
Final lenses

replaced
debris shields

Each FOA delivers
four beamlines of
light (a Quad) to the
target chamber

To target

03 Mixture Low Energy
Imprint Lasers

Shielding

Gas ngh Energy
Drive Laser

Grating

Debris &
Radiation
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Plasma Gratings
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Ditfractive Plasma Optics via Controlled lonization

o
Crossed laser lonization
beams interfere...

And create a <
grating in air | Intensity

4+—— Space —>

Solid-state limited to <102 W/cm?

A . :‘"y/l
/. Plasma =
. 7 / Free electron
ump density Ionization grating at >10™* W/cm?
Pump B Neutral gas ——_

4—— Space —>

— \

Other beams will diffract Index of
1 <+ .
from the modulation U u u refraction
Suntsov et al., Appl. Phys. Lett. 94 (2009).
Yang et al., Appl. Phys. Lett. 97 (2010). Jarnac et al., Opt. Commun. 312 (2014).

Shi et al., Phys. Rev. Lett. 107 (2011). Edwards et al., Optica 10 (2023).
Durand et al., Phys. Rev. E 86 (2012). Edwards et al., Phys. Rev. Lett. 133 (2024).



Creating an lonization Grating in Air

Oth Order Probe

Pumps
. ‘ 1st Order Probe

/ Experiment
Scattering

Screen

Expetriment

In terferometri

Ionization grating at
>10™ W/cm?

Experiment
Fluorescence

“Easy,” but no ability to control grating thickness

1

P B Interferometry Previous work on ionization gratings was done in this
P Probe configuration, with up to 18% efficiency (usually ~1%).
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Limiting the extent of a grating (in z) dramatically

Increases efficiency

Gas Cell Configuration

Gas Cell Wall

Gas Jet Configuration

Beam Path

No Grating

©

5 =50 =25 0.0 2.5 5.0
o

0(°)

Diffracted Undiffracted

g &

Pump Profile

i

0.0 0.5

xr, mm

3] -5.0 -2.5 0.0 2.5 5.0

0 (°)
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High-efficiency diffraction of mid-infrared light

10

Up to 60% of incident energy diffracted
into a beam (losses mostly absorption)

(@3

Ratio of diffracted to undiffracted energy —5 1
1s 8.7:1

No Grating

=20 —10

0(°)

10

20

Diffracted

Undiffracted

=20 =10

0
0 ()

| 60% incident energy

10

20

1.0

0.8

0.6

0.4

0:2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Edwards et al., Optica 10 (2023).
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Creating Gratings for 800 nm Light

{ i ¥ / :{ 2 >
AE S oL /
] i .A' y
i ‘

Plasma Grating Density mié:gilrlzic\g%ng ;/ri]gfco:;,l:j;iil?omirez
Princeton Stanford
O . 1 T |
b= 010"
1=}
S .05
-
A
5

0 0.2 0.4 0.6 0.8 —100 0 100
x [mm] x, pm

We can produce (and measure) plasma gratings in a gas cell under vacuum - length
and density are (reasonably) controllable.

Ao
2 sin 90

Fringe spacing follows analytic dependence on pump crossing angle: A = 35



Plasma Grating Stabllity

Average efficiencies above - ' ' ' | '
35% achieved at 800 nm.

0.5F :
Single-shot efficiencies 0.4 B ks R R N AT, it 23
above 50% A e A i '

= 03k S

10 Hz operation can be ,
maintained for hours or 0.2 =
more.

0.1 i
Well-suited for high-
repetition-rate operation 0 ” 0 - 0 - s

Time (min)
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Optical Properties of Diffracted Beams

Near-field beam profile Far-field (at focus) Pulse Duration

A =3 T T T A T 1 | : ’ |

| —

< if—

33.7 fs

N

" g 1 L + us 1 1 1 + O —100 0 100
t.fs

)

(@2
Alsuaju|
I, norm

-

Diffracted beams have good spatial and temporal quality and diffraction angles
follow analytic predictions

M.R. Edwards et al., Phys. Rev. Lett. (2024).



Contrast Improvement

Deliberately spoiled initial beam

10"

1™

10~4

Intensity, a.u.

—
Ny
@)

107°

—100

M.R. Edwards et al., Phys. Rev. Lett. (2024).

'l

—— Initial

—— Grating

|

T
m l"' IM{UM Nwl Detection

Floor

) —50 —25 0 25

Time, ps
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Chirped Pulse Amplification

1

Stretched
amplified pulse

Stretched (“chirped”) pulse

Amplifier
Compressor
—
— Blue light travels a
shorter path than red
—> —> u Grating light, compensating
<+ ' ‘ for the chirp.

Ultrashort pulses

contain a broad Grating Stretcher
spectrum of light Red light travels a

shorter path than blue
light, so it emerges first
\_ ) g g

Compressed amplified pulse

k Grating/

We want to replace this grating — we need a dispersive optic
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Volume transmission gratings are dispersive

Theory / Simulation

. : : 1 N .

Can we build a compressor? Diffraction Y S
angle depends : e

— length Efficiency \e¢ -
6, 0, on wave s ¥
— z ./ AAA\\ |
e f— / Dispersion i\
! Al en ]

0 1 1 1 1 1

) ) . 750 800 850
Spectral Bandwidth: Dispersion: A, NM
AAFWHM N nq . A _ 2\ sin HB

~ — = sin 6 in 6
2 2 sinZHB\ A 7 ,\ sin 6y + sin 6,
Larger Bragg angle /

Larger plasma density Larger Bragg angle increases
reduces bandwidth increases bandwidth angular dispersion
(but is harder to make)

A CPA compressor requires large angular dispersion: performance set by tradeoff
between bandwidth and dispersion

Edwards and Michel, Phys. Rev. Appl. 18 (2022).



Designing a plasma grating compressor

eut g Gompressor Using plasma for this grating means
ol optics can be 100-1000 times smaller.
i X

Compressed
Final Pulse

Amplifiers Tranamissian
Stretched Pulse Amplified Pulse
Pump Lasers \ =}_ —
s L
Pla: 1 iting
i T T T T T T >
3T D

| 2 | }éfz}lal l m=psEm=N ]
o lw |
2 \l I '
s P - :

e
—0-g—LL,
L [ ] | - .
- ‘ 1 Experiments agree
, 0 L ~ _ ) ) .
Time, ps eS| —— with predicted first-
| ;—'=.-. - . .
L LTSS order dispersion
. 1.5 2 2.5

Edwards and Michel, Phys. Rev. Appl. 18 (2022). 0, / 05 41



Angular Dispersion of Femtosecond
Pulses from an lonization Grating

Measured dispersion of plasma gratings close to analytic predictions.

Victor Perez-Ramirez
PhD Candidate
860 1 Stanford

840
0.8

gszo
\-5 - 0 6 E
= 800 T3
50 =
£ 780 =
D) | &
= 0.4 £
= 760

740

720 5=

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

V. M. Perez-Ramirez et al. (2025). A 6O (de 42
oamie: o (deg)



Design envelope for a plasma grating compressor

Larger index modulation (higher density)

20.0
Fnal Puse. -m
17.5 -
15.0 - 102
T 12.5 1 z
= 4
Compressor design is o 10.0 1 =
constrained by plasma = Lo é
density and distance gratmg L 5
i rage T
between gratings. Angle  50- s
/ Tt 0.007 — |
- 2.5 -
blmm] N 0.075 (A/1> Larger distance between gratings -
~ 2 T T T T T 10
ATjps)  tan®fp \ 4o 0.025 0.050 0.075 0.100 0.125  0.150

AXN Ao

Edwards and Michel, Phys. Rev. Appl. 18 (2022). Laser BandWIdth 43



Holographic Lenses




Holographic Lenses

Pump A

Intensity k\ \
Gas density 2 \ Pump B

An/n Ja
A Delay
/B

Intensity

1st order probe

Oth order probe

Pumps Probe Time z

50“%“

T, um
=)
L]
3

Changing pump beam focusing produces | = |
diffractive lenses instead of gratings. s8R B

M.R. Edwards et al. Phys. Rev. Lett. 128, 065003 (2022).
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Making a Holographic Gas Lens

. o0
Residual zeroth order /
f Residual pumps
z Dave Singh
PhD Student
T Stanford
Outer N2 coflow ¥
A
02-03-CO2 mix
Flow tube o
- rf”cted first order
Focal spot

0.5 g

Pumps S

266 nm, 5-10 s, = o sl =

<8 mJ = a

. ()

Gaeous optic 05— 00lE

~d X, mm
=
€ R
S R : z
R [T =
SN, : J E
g . g
0 e . X E
= -4
D. Singh et al., arXiv:2510.02659 (2025). Probe - 46

532 nm, 5-10 ns, <210 mJ



Gas Lens as a Focusing Optic

In experiments, >50% efficiency achieved for focusing a 532-nm 5-ns read beam.
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Write: 266 nm, 5 ns, 5.5 m|
Read: 532 nm, 5 ns
Gas: 5 mm, 4.3% O,, 50% CO,
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Tuning the Focal Length of a Gas Lens
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Collimating Lens off
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Pointing Stability of a Gas Lens

Focal spot size in a focusing configuration is also stable.
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Focusing of Femtosecond Pulses with a Gas Lens

a ) Lens off

1
>
>40% diffraction efficiency achieved with 800- ¢ s g
nm 35-fs pulses in a collimating configuration. = =
)
o
(no fundamental limit to higher efficiency) 6 0
b Lenson
A-period Fourier mode of 6
FWHM bandwidth refractive index modulation
\ / £
AN n1 EOf o
— ~0.8—— >
AQ sin“ 0p
-6
-20 10 0 10 20

(@]
N
=
3 L
3

orig. (predicted)

AL =~ 60 nm for 8y = 1.2°,ny = 4-107°>

w
T

—--- diffracted, e./e, e

=
T

Beam diameter, mm
N

o

1.2

o
o
N
o
SN
=
(e2]
o
(0]
=
o

D. Singh et al., “Holographic Gaseous Lenses for High-Power Lasers,” arXiv:2510.02659 (2025). Zm
)

51



Acknowledgements

V.M Perez-Ramirez, S. Cao, K. Ou, D. Singh,

C. Redshaw, H. Rajesh, D. Chakraborty,
E. Koh, P. Dedeler
Stanford University

P. Michel, A. Oudin, N. Lemos, E. Kur
Lawrence Livermore National Laboratory

J. Wurtele, V. Munirov
University of California, Berkeley

J.M. Mikhailova, M.M. Wang, N.M. Fasano
Princeton University

2]8

Here at ZEUS through February

LA

Support provided by:

NYSE

ARPAE

SAPPHIRE

H. Milchberg, S. Waczynski, E. Rockafellow

University of Maryland
L. Lancia C. Riconda
LULI, CNRS LULI, Sorbonne University

A. Houard, N. Cantonnet-Paloque
LOA

J.P. Palastro, J. Pigeon, P. Estrela

Laboratory for Laser Energetics,
University of Rochester

A.G.R. Thomas
University of Michigan

=B U.S. DEPARTMENT OF

&) ENERGY

Xc ENERGY
- CORPORATION

Stanford Applied Plasma Physics &
High-Intensity Radiation Engineering

Stanford

University

Lu; Lawrence Livermore
National Laboratory

[ ¥ PRINCETON
UNIVERSITY

Berkeley

UNIVERSITY OF CALIFDRNIA

LABORATORY FOR
LASER ENERGETICS
UNIVERSITY OF ROCHESTER

UNIVERSITY OF

AND

D X e B

UNIVERSITY OF MICHIGAN

Stanford

University

M Lawrence Livermore
National Laboratory 50



SAP P H I RE Stanford Applied Plasma Physics &
High-Intensity Radiation Engineering

mredwards@stanford.edu

Summary

Diffractive plasma and gas optics offer higher damage thresholds than traditional
optics and robustness compared to other plasma optics.
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These optics can be used as components of high-power laser systems: pulse
cleaning, pulse compression, and holographic lenses.
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