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Why do | enjoy working at Los Alamos National Laboratory?

My family and | love the breathtaking
nd the rich cultural history in

orthern New Mexico!

| am a

- PhD Nuclear Physicist
- Deputy Group Leader
- Mom of 2 young kids

- Immigrant

- QOutdoor enthusiast

Our world-class staff solve grand challenges for the nation and the world!



The path to a US inertial fusion power plant

Existing ICF Scuentlﬁc_ pilot plant Power plant
facilities demunf;?ratmn (EPP)
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Rep. Rate: <<1/day Rep. Rate: 1-10’s/day Rep. Rate: 0.1-10 Hz Rep. Rate: 0.1-10 Hz
Eng. Gain: <<1 Eng. Gain: ~1 Eng. Gain: ~10 Eng. Gain: ~10
Produces electricity Designed for ongoing

power production

Highly diagnosed Highly diagnosed Minimal diagnostic suite Minimal diagnostic suite

n/shot ~ 1018 n/shot ~1018-1021 n/shot ~1020-1021 n/shot ~1020-1021

[BRN Workshop on Measurement Innovation 2024]



ICF towards IFE: Where are we now?

Ignition regime
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The fusion community has been racing towards a shared
goal of ignition to harness the power of the stars

Ignition means:

D Neutron

Q) g - a self-sustaining reaction
- Increasing self-heating removes the need
b Energy for external heating (Lawson criterion)

1\/

Fusion
Ehe New Nork Times
T

Scientists Achieve Nuclear Fusion

Breakthrough With Blast of 192 Lasers
The advancement by Lawrence Livermore National Laboratory
D+T- a(35MeV) +n (14.1 MeV),

researchers will be built on to further develop fusion energy

Q — 176 Mev research.

Ignition on NIF was achieved on 08/08/2021
and fusion energy gain > 1.5 on 12/05/2022



Inertial Confinement Fusion at the National Ignition Facility

NIF laser: 260 m long

192 beams

2 MJ energy

10 m diameter target chamber

~1 mm carbon capsule filled with DT

O NONG

1. Laser drive 2. Ablation 3. Compress & shock 4. Fusion + alpha heating
= Ignition!



Ilgnition: Diagnosing a new physics regime at the NIF

NIF: First implosion 6/2011, Ignition 8/2021
2013: Change laser pulse shape - stability

2015: Change ablator from plastic -> diamond -
Implosion symmetry

2018: Increase capsule size, reduce hohlraum size
- energy coupling

2021: smaller laser entrance hole, more laser
energy, target quality - energy coupling, fewer
perturbations

2022 - 25: We now reach the ignition regime
regularly!

N210808 reached ~1.3 MJ yield
and burn propagation (ignition)!
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LANL diagnostics provide data
In challenging conditions



We have overcome performance limitations and can
provide shape information to tune the next shot
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We see markers of ignition in our highly diagnosed plasma
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[M. Durocher, et al. Rev. Sci. Instrum. 2024; 95 (9)]

Burn volumes become larger

while burn durations become shorter
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LANL has 80 years of diagnostic experience for single shots

Neutron time of flight Gas Cherenkov detector Neutron Imaging (3D)
2ol Scntillator Reaction history recorded by LANL GCD detector
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The US lead the world in nuclear detector technologies for fast diagnostics



The nuclear imaging system measures the fuel at stagnation

Recoiling Downscattered neutrons: 6-12 MeV

Burning DT fuel

Primary neutrons: 14.1 MeV

y’s from neutron-carbon
Interaction: 4.4 MeV

a
=

Carbon ablator _
Fusion gammas: ~16.7 MeV

Cold fuel

_ _ X-ray bremsstrahlung
(high density DT)

h ~ 100 um -
Primary neutron images directly
localize the burning fusion plasma



The NIS Is a pinhole camera with thick coded apertures

Image

Aperture

Source

reconstruction of source
with multiple pinholes

using Bayesian inference
NIS3

[D. N. Fittinghoff, N. Birge, V. Geppert-Kleinrath,
Rev. Sci. Instrum. 2023; 94 (2): 021101]

[P. Volegoy, et al. Rev. Sci. Instrum. 2014; 85 (2): 023508] Long mean free path of 14 MeV neutrons
(~ 3 cm in Au) requires thick barrier for contrast



The NIS diagnostic provides nuclear and x-ray images

IP detection for x-rays and energy-
Integrated neutron images

NIS3 ap
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camera 3

gamma

Scattered
C2

Primary
C1

——

signal
1 1

erture

S neutron

scintillators mirrors

| |

neutron

=8

time

Gated detectors to distinguish
scattered neutrons and gammas

—
l e

camera 1
6-12 MeV

camera 2
14 MeV




Limited-view tomography allows visualization of 3D effects

Neutrons reduced
neutron

production

(5-225)

'neutrons
40+ B x-ray

Y [p2m] -40 -40 X [ppm]

jet from the fill tube We see performance-limiting mix of

high Z material into the fuel in 3D

Y [ppm] 40 40 X[um]

[P. L. Volegoy, et al. Rev. Sci. Instrum. 2021 ; 92 (3): 033508]



Gated images provide cold fuel density

Downscattered image

3D hot spot

250
200
(90-315) ‘]
1150
140' e | — 1100
00 4 Cold fuel density
c100 [ | B /
m 50
% 80|
= 60} W

40 Y (90-315) 0
20 <y . ’

lllumination’ function [P. L. Volegov, J. Appl. Phys. 2020; 127 (8): 083301 ]

g/cc



Gamma imaging provides ablator position

NIF N211107 intens = 0.01% max
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We have been tuning the drive for optimal symmetry
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Highest yields seem to exhibit new prolate asymmetry
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Doppler
® = proton broadened don’t escape
® = neutron -~ f
—— n(14.1 MeV) +a(3.5MeV)
o %e

D+ T ——>°He* 1405
e ¥ 4 — Stlg +vY(16.75MeV) — n+a

- [

most unperturbed

Gammas are the most unperturbed signal
from DT fusion reactions. Detaliled features
of the fusion burn can be resolved.

ow do we measure fusion burn history?

Neutron signal is broadened by
Doppler effect. Neutron time of
flight allows for yield and burn
Integrated ion temperature
measurement.

Alpha particles are charged and
heavy. Alphas heat the hotspot

(alpha heating) and provide the
energy going into ignition.



DT gamma reaction history provides crucial information

Laser Power

Neutrons

Laser Power

Time

Bang Time N

ajey uonoeay

Gammas directly from burn
provide reaction history =
Fusion rate as a function of time

Bang Time: benchmarking simulations
energy absorbed in the capsule
Burn Width: duration of thermo-nuclear condition

assembly and disassembly process

Burn Profile:

shape of reaction history
gives limits for simulations




Gas Cherenkov Detectors (GCD) measure reaction rate

DT branching ratio: 4.2*10
Fusion y (17 MeV)

Carbon

 Measurement threshold set by gas pressure
Carbon y .
aamevy ¢ Cherenkov process inherently fast
<10 ps @ 8 MeV threshold
pramen * Photomultiplier Tube (PMT) resolution ~100 ps
 New PD-PMT 10 ps resolution

GCD-3:

y-e Converter  Pressurized Gas Cassegrain Optic

[N

y-Radiation Compton Cherenkov Photomultiplier
Electron Radiation Tube (PMT)



The reaction history changes in the ignition regime
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The path to a US inertial fusion power plant

Existing ICF Suentlflc_ Pilot plant Power plant
facilities demonstration (FPP)

(e.g. NIF) facility

Y

Rep. Rate: <<1/day Rep. Rate: 1-10’s/day Rep. Rate: 0.1-10 Hz Rep. Rate: 0.1-10 Hz
Eng. Gain: <<1 Eng. Gain: ~1 Eng. Gain: ~10 Eng. Gain: ~10
Produces electricity Designed for ongoing

power production

Highly diagnosed Highly diagnosed Minimal diagnostic suite Minimal diagnostic suite

n/shot ~ 1018 n/shot ~1018-1021 n/shot ~1020-1021 n/shot ~1020-1021



nilot plant will have different and minimal diagnhostics

Need Rep rated (PRO2)
T e e «— and Rad hard (PRO3)

detectors to operate at

this level

Need to develop plant
L infrastructure diagnostics
to make this jump (PRO4)

- Need diagnostic
Maximize diagnostics to maximize understanding #——— development to learn
how to achieve high

gain (PRO 1)




Diagnostic needs for a scientific demo and pilot plant

Minimal Reliable Rep-rateable [ Universal }
/3.1 Determine\/&z Simulations 3.5 Develop
a minimum of high-rad ML-supported
diagnostic environments high rep-rate
suite for an in an FPP analysis codes
. \ NEEY Y
O FPP // N
3.3 Develop &
test rad-hard
t
\ components y

3.4. Develop driver-agnostic detector designs

|

6. Test concepts & parts at relevant facilities




How our diagnhostics can evolve: repetion-rate

7 R

Experimental
data

L J

S N\
Simulation
database

- P

7 % 7 N\
Evaluation
Convolutional (online, fast) 3D ;
neural reconstruction
S—— of hotspot
morphology
e . e A
ITraining
(offline, slow)
o N\
Synthetic |
diagnostics
- Synthetic
data : :
Rep-rated imaging can be
\_ | ) used for plant control

training a neural network for rapid online 3-D reconstructions

[K. Churnetski, et al, High Energy Density Physics, 52, 2024, 101108,].



First-ever spatially resolved ion temperature measurement

Source

Aperture Scintillator Streak camera

»
=
=
=
>
S
[
E o
=
)
.
L
>
e,
7]
=
[7)
—
=

[N. Birge, et al, Rev. Sci. Instrum. 2022; 93 (11): 113510]
[C.R. Danly, etal. Rev. Sci. Instrum. 2023; 94 (4): 043502]

8 ! I T T
—— Temperature [keV]

7L = =Emission profile [A.U.]
X
=,
o
é— 4- PR - o

/7 ~

- / S~

3 y, ~

d ~
2 4 g ! L ! L 1 L - ~
Streak camera 80 60 -40 -20 0 20 40 60

Source Position [um]




2D tomography allows ion temp imaging for NIF PMTe

scintillating fiber petals time multiplexers optical fibers /

ring aperture (10-20 cm)
FOV ~ 300um, M ~ 100

slot for collinear imaging /

NTOF? —~—

/L — — PMT

X 10— _— N )

| g e
scintillators fibers fiber delays pulse i has Tion for bin xi

[L. Tafoya, et al. Rev. Sci. Instrum. 2024; 95 (9): 093512.]

Multiplexing technology allows for simpler detectors away from radiation sources



The GRH diagnostic is ideally suited for IFE applications

xRégiE Simulated Alpha Curves and Burn-Through Regions

Alpha [1/ns]

The GRH diagnostic is radiation hard
and has a high repetition rate
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a is the logarithmic derivative of the reaction rate
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The reaction history can be used to
gauge robustness of each shot in
laser IFE in real time.



Beyond diagnostics: fusion relevant nuclear data

¢ S.Chiba (1985)
LANL houses one of thew most T ¥ Forrest (2021)

Important nuclear data evaluation L Legendre Coefficients

catalogues: ENDF
The evaluated nuclear data file Is

used by nuclear physicists
around the world.

Cross Section (mb/sr)
®
——
—a—

Nuclear data relevant to fusion is __
sparse (1-15 MeV neutron ol I | }
energy, light elements) 1 1

1 0.5 0 -0.5
Cosine {Hlab)



Our community has the tools to measure nuclear data

We have the experimental
opportunities to fill in these gaps
and the evaluation knowledge to
produce useable data sets.

WNR Neutron Flux

1.0E+00
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1.0€-05

10E-01 10E+01 1.0e+02 10E+03

En (MeV)

1.0E+00

[A. C. Hayes, et al. AIP Advances 2025; 15 (3): 035001.]

Li mini-blanket

uclear reaction vessel and detector,
Neutrons from reactions

By C. Forrest [LLE]
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Benefits to the existing ICF program

- NNSA applications of ignition needs a robust ignition platform

- Advances in data analysis and ML methods

Advances in detector materials (rad-hard and rep-rateable)

Energized workforce working on IFE

Existing ICF Scientific Pilot plant Power plant

facilities demon?t.ration (EPP)
(e.g. NIF) facility /

The ICF community has the experience
and tools to take on the IFE challenge!

Rep. Rate: <<1/day Rep. Rate: 1-10’s/day Rep. Rate: 0.1-10 Hz Rep. Rate: 0.1-10 Hz
Eng. Gain: <<1 Eng. Gain: ~1 Eng. Gain: ~10 Eng. Gain: ~10
Produces electricity Designed for ongoing

power production

Highly diagnosed Highly diagnosed Minimal diagnostic suite Minimal diagnostic suite
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ICF: “Creating a Star on Earth!”

NIF produces ~500 TW of UV laser light for several billionths of a sec (ns):
- The US electrical energy consumption is only ~0.5 TW (0.1% of NIF)
- Laser drive duration ~5 ns (the laser beams are only ~1.5 m long)

ICF spherical convergence leads to:
- Temp ~ 150 MK (~10x hotter than the sun’s center)
- Pressure ~ 400 Gbar (that’s nearly half a trillion atmospheres!)
- Duration ~90 ps (light only travels 3 cm in that time)
- ~3 MJ yield (~30x the power of human electrical consumption)



Sensor research and instrument integration needed

Repetition rate

Radiation
Hardness

Low yield

Moderate
yield

High yield

V

~1/day 1 shot/hr 1 shot/10 s 10 shots/s 100 - 1000 shots/s
Microchannel-plates (typically coupled to scintillators and cameras)
. Integrating pixel
Cealdarod Semiconductors detector (kHz - MHz)
CCD/CMOS
e.g. AGIPD, Jungfrau
detectors
Standard scientific 1 Fast scientific cameras
cameras (100 Hz)
Ve
Fast decay
[ Phosphors } Scintillator/PMT geiutiiaters
< Cherenkov
Plastic ) IFE-FPP relevant detectors
dosimeters Activation detectors| Real time nuclear activation (kHz)
(CR39)

Photodiodes

Film/Image plates

*Icons illustrate optimal detector performance in terms of radiation survivability and maximum repetition rate. Note, there is also an inverse
relationship between radiation hardness and detector resolution, as well as a similar inverse relationship for resolution and repetition rate.

[BRN Workshop on Measurement Innovation 2024]
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