Energy transfer in compressible MHD turbulence

Philipp Grete
Michigan State University

in collaboration with Brian O'Shea, Kris Beckwith, Wolfram Schmidt and Andrew Christlieb

MIPSE Seminar
University of Michigan, Ann Arbor, Nov 15, 2017

Motivation

- In many astrophysical systems
 - turbulence
 - compressibility
 - magnetic fields
 - e.g. dynamos, accretion disks, cosmic rays, star formation
- How do they interact?
- \Rightarrow Study energy transfer

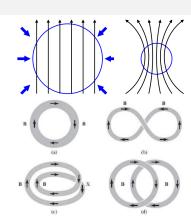
[Image credit top: MPIfR and Newcastle University]

[Image credit bottom: HST]

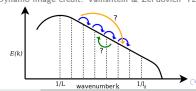
More on energy transfer

- Total energy in an ideal MHD system is conserved
- Individual energy (and scale) budgets are not
- Different budgets and different interactions

- Regarding turbulence
 - Energy cascade
 - Inverse transfer
 - Nonlocal transfer



[Dynamo image credit: Vainshtein & Zel'dovich '72]



Formal description of energy transfer

Nonlinear term in real space, e.g.

$$B(x)\cdot (u(x)\cdot \nabla)\,B(x)$$

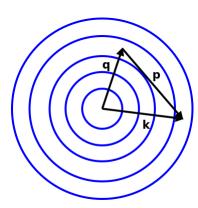
involves three wave vectors in spectral space, e.g.

$$\rightsquigarrow \left(\widehat{B}(k)\cdot \widehat{B}(q)\right)(\widehat{u}(p)\cdot p)$$

that must form a triangle

$$\mathbf{k} + \mathbf{q} + \mathbf{p} = \mathbf{0}$$

⇒ triad interactions

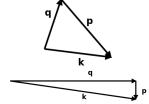


Shells in spectral space

Interpretation of triad interactions

$$\left(\widehat{B}(k)\cdot\widehat{B}(q)\right)(\widehat{u}(p)\cdot p)$$

- Field \widehat{B} at scale q gives energy to field \widehat{B} at scale k by an interaction of type \widehat{u} at scale p
- Here, magnetic to magnetic via kinetic advection
- Using shells rather than individual modes
 ⇒ shell-to-shell transfer



Local interactions: wavevectors with "similar" magnitudes

Nonlocal interactions: wavevectors with "dissimilar" magnitude

 \Rightarrow Locality is an important question in MHD, e.g. background fields

Energy budgets in incompressible MHD

$$E_u(K) = \sum_{Q} \int - \underbrace{\mathbf{w}^{K} \cdot (\mathbf{u} \cdot \nabla) \mathbf{w}^{Q}}_{\text{advection (kinetic cascade)}}$$

$$+\underbrace{\boldsymbol{w}^{\mathrm{K}}\cdot\left(\boldsymbol{v}_{\mathrm{A}}\cdot\nabla\right)\boldsymbol{B}^{\mathrm{Q}}}_{\mathrm{magnetic \ tension}}$$

$$E_b(K) = \sum_{Q} \int - \underbrace{\mathbf{B}^{\mathrm{K}} \cdot (\mathbf{u} \cdot \nabla) \, \mathbf{B}^{\mathrm{Q}}}_{ ext{advection (magnetic cascade)}}$$

$$+ \underbrace{ \textbf{B}^{K} \cdot \nabla \cdot \left(\textbf{v}_{A} \otimes \textbf{w}^{Q} \right) }_{\text{magnetic tension}}$$

 $+\cdots dx$

□ ト 4 個 ト 4 重 ト 4 重 ト 9 Q ()

 $+\cdots dx$

$$E_{u}(K) = \sum_{Q} \int -\frac{\mathbf{w}^{K} \cdot (\mathbf{u} \cdot \nabla) \mathbf{w}^{Q}}{\text{advection (kinetic cascade)}} - \frac{1}{2} \mathbf{w}^{K} \cdot \mathbf{w}^{Q} \nabla \cdot \mathbf{u}$$

$$+ \frac{\mathbf{w}^{K} \cdot (\mathbf{v}_{A} \cdot \nabla) \mathbf{B}^{Q}}{\text{magnetic tension}} - \frac{\mathbf{w}^{K}}{2\sqrt{\rho}} \cdot \nabla (\mathbf{B} \cdot \mathbf{B}^{Q}) + \cdots d\mathbf{x}$$

$$E_{b}(K) = \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot (\mathbf{u} \cdot \nabla) \mathbf{B}^{Q}}{\text{advection (magnetic cascade)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot (\mathbf{u} \cdot \nabla) \mathbf{B}^{Q}}{\text{advection (magnetic cascade)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot (\mathbf{v} \cdot \nabla) \mathbf{B}^{Q}}{\text{advection (magnetic cascade)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot \nabla \cdot (\mathbf{v}_{A} \otimes \mathbf{w}^{Q})}{\text{advection (magnetic tension)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot \nabla \cdot (\mathbf{v}_{A} \otimes \mathbf{w}^{Q})}{\text{advection (magnetic tension)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

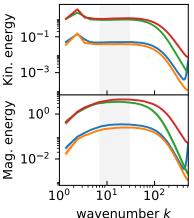
$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot \nabla \cdot (\mathbf{v}_{A} \otimes \mathbf{w}^{Q})}{\text{advection (magnetic tension)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot \nabla \cdot (\mathbf{v}_{A} \otimes \mathbf{w}^{Q})}{\text{advection (magnetic tension)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

$$= \sum_{Q} \int -\frac{\mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}}{\text{advection (magnetic tension)}} - \frac{1}{2} \mathbf{B}^{K} \cdot \mathbf{B}^{Q} \nabla \cdot \mathbf{u}$$

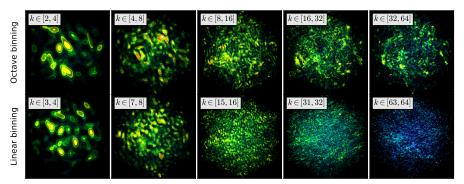
- Isothermal, isotropic, homogeneous
- Two codes: Enzo and Athena
- Two regimes: subsonic $\rm M_{s}\approx 0.5$ and supersonic $\rm M_{s}\approx 2.5$
- Analyzed stationary regime (30 snapshots over 3 turnover times T)

Compensated spectra



How to define shells (eddies)

- Linear (thin) binning ⇒ volume filling wave-like structures
- \checkmark Logarithmic binning \Rightarrow localized in real and spectral space



Eddies in motion

[Grete+ PoP 2017]

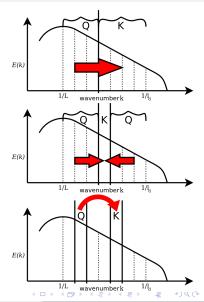
movie plays here. . . maybe

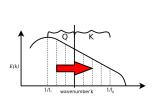
What can we learn from the transfer functions $\mathcal{T}_{XYZ}(Q,K)$?

• Cross-scale transfer: $\sum_{Q \le k} \sum_{K > k} \mathcal{T}$ e.g. relevant for subgrid-scale turbulence modeling

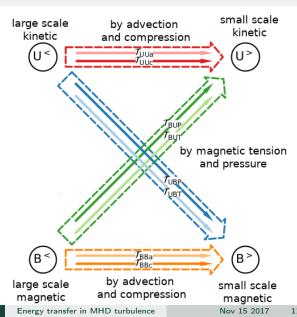
 Total transfer: $\sum_{Q} \mathcal{T}$ e.g. relevant for the net effects cf. dynamos

Shell-to-shell transfer: T
 helps to explain everything a lot

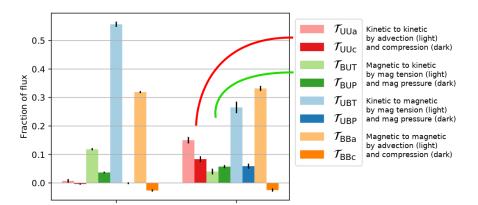




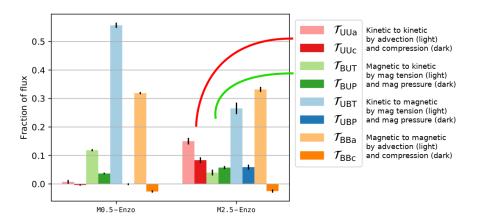
- Not only one energy reservoir
- Transfer within and between



Mean cross-scale flux in the inertial range



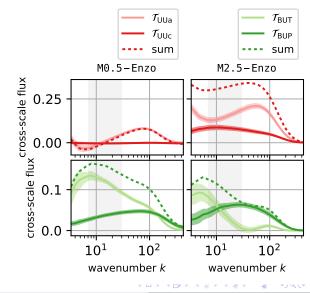
Mean cross-scale flux in the inertial range



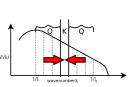
- Subsonic transfers match results of spectral code [Debliquy+ PoP 2011]
- Supersonic transfers are more dynamic

Cross-scale transfer versus scales

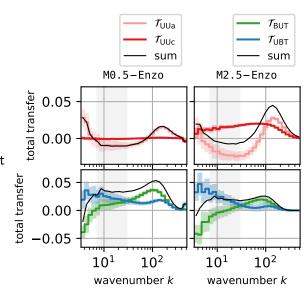
- Individual fluxes are not constant
- Fluxes between regimes
 - are similar (shape)
 - vary in magnitude
- Total flux (all terms) is constant



Total transfer in (or out) a shell

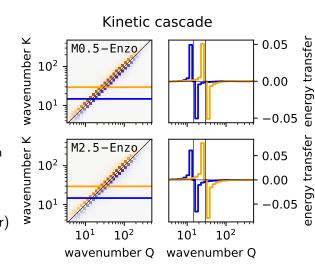


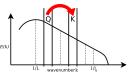
- Advection and compression work against each other
- Magnetic tension transfers energy to most scales



The energy cascades

- Energy transfer is local
- \Rightarrow Shell N
 - receives energy from shell N - 1
 - transfer energy to shell N+1
 - Applies to (the stronger) magnetic cascade, too

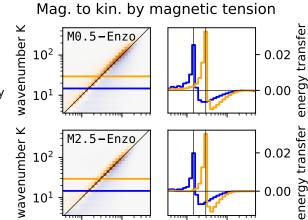




- Energy transfer is weakly local
- Velocity and magnetic field exchange most energy at K = Q
- Energy is received from few larger scales Q

 K
 and transferred to more smaller scales Q

 K



 10^{1}

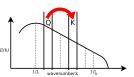
 10^{1}

 10^{2}

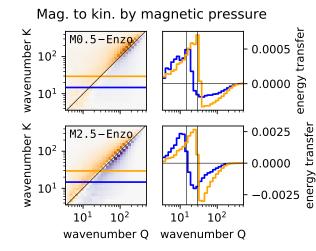
wavenumber Q

 10^{2}

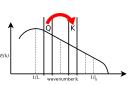
wavenumber Q



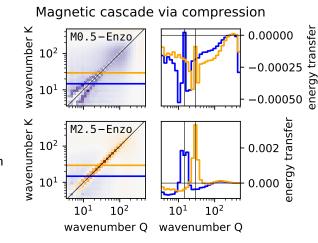
- Energy transfer is even less local
- Much stronger in the supersonic regime
- Similar shapes in both regimes



The compressive component in the magnetic cascade



- Overall weak (few %)
- Very dissimilar between regimes



Conclusions

- Established a method to analyze the compressible regime
- Underlying transfers between regimes
 - are overall similar
 - but can differ in their components and magnitudes
- Next: exploration of parameter space (in more "realistic" environments)

