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Motivation

@ In many astrophysical systems

e turbulence
e compressibility
e magnetic fields

e.g. dynamos, accretion disks, cosmic
rays, star formation

@ How do they interact?
= Study energy transfer

[Image credit top: MPIfR and Newcastle University]

[Image credit bottom: HST]
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More on energy transfer

N I'4
-> -
o Total energy in an ideal MHD system is ” x
conserved = i .
o Individual energy (and scale) budgets » b '
are not a5 s -
o Different budgets and different - - -
interactions (Ao D

@ Regarding turbulence

e Energy cascade
e Inverse transfer
-]

E(k)

1L wavenumberk L
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Transfer functions

Formal description of energy transfer

Nonlinear term in real space, e.g.
B(x) - (u(x) - V) B(x)

involves three wave vectors in

spectral space, e.g. ‘ \
~ (B(k)-B(a)) (@(p) - p)
that must form a triangle
k+qg+p=0

Shells in spectral space
= triad interactions
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Transfer functions

Interpretation of triad interactions

o Field B at scale q gives energy to field B at
scale k by an interaction of type U at scale p
~ N ~ @ Here, magnetic to magnetic via kinetic
(B -B(a) (a(p)-p) ° g

@ Using shells rather than individual modes
= shell-to-shell transfer

P Local interactions: wavevectors with “similar”
magnitudes
k
q Nonlocal interactions: wavevectors with “dissimilar”

\J P magnitude

= Locality is an important question in MHD, e.g. background fields
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Energy budgets in incompressible MHD

EU(K):Z/— wi . (u- V)w®
Q

advection (kinetic cascade)

—i—WK-(VA'V)BCi + - dx

magnetic tension

Eb(K):Z/— BX . (u-V)B®
— ———
Q advection (magnetic cascade)
+ BX. V. (v ®wQ) + - dx

magnetic tension
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Energy budgets in compressible MHD [Gretet PoP 2017]

1
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" Philipp Grete Energy transfer in MHD turbulence Nov 15 2017 6 /19



Driven turbulence in a box (10243) (Grete+ PoP 2017

- MO.5-Enzo =— M2.5-Enzo
— MO.5-Athena — M2.5-Athena

Compensated spectra

> 3
o ]
@ Isothermal, isotropic, homogeneous E) 1071 4
@ Two codes: Enzo and Athena @ :
. . £ 1073

@ Two regimes: subsonic Mg ~ 0.5 v
and supersonic Mg =~ 2.5 -
. . o 10° 4

@ Analyzed stationary regime (30 o
snapshots over 3 turnover times T) @ E
L]
9 1072

=

100 10! 102
wavenumber k
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Simulations

Eddies at rest [Gretet PoP 2017]

How to define shells (eddies)
@ Linear (thin) binning = volume filling wave-like structures

Logarithmic binning = localized in real and spectral space

ke [4,8]]

Octave binning

Linear binning
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Edd |eS In mOtlon [Grete+ PoP 2017]

movie plays here. .. maybe
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What can we learn from the transfer functions Txvyz(Q, K)?

o Cross-scale transfer: > oy > a7

f‘/\a"”"K\’W

e.g. relevant for subgrid-scale o
turbulence modeling
L Iwa‘ver;umberk ‘ l}ld ;
A
o Total transfer: > 5T
e.g. relevant for the net effects cf. £
dynamos
H H A
L waver;um;:erk 1y ”
A
@ Shell-to-shell transfer: T
helps to explain everything a lot B9
A
»
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Cross-scale transfer overview (Grete PoP 2017]
large scale by advection small scale
kinetic and compression kinetic

r Tou
| T

E(k)

\ 4

[ . ,
4 by magnetic tension
and pressure

@ Not only one
energy reservoir

@ Transfer within \;
and between -
>
large scale by advection small scale
magnetic and compression magnetic
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Mean cross-scale flux in the inertial range (Grete PoP 2017]

TU Ua Kinetic to kinetic
= by advection (light)
TU Uc @and compression (dark)

©
”n
!

TBUT Magnetic to kinetic
by mag tension (light)
TBUP and mag pressure (dark)

o
~
L
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o
w
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TU BT Kinetic to magnetic
by mag tension (light)
TUBP and mag pressure (dark)

o
o
L
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TBBC and compression (dark)
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Mean cross-scale flux in the inertial range (Grete PoP 2017]
i TUUa Kinetic to kinetic
0.5 = by advection (light)
| ] TUUC and compression (dark)
0.4 4 TBUT Magnetic to kinetic
< 9 " by mag tension (light)
E . | TBUP and mag pressure (dark)
bl f
G 0.3 TUBT Kinetic to magnetic
S by mag tension (light)
S - I 7(gp andmag pressure (dark)
90.2
o 1 TBBa Magnetic to magnetic
. by advection (light)
0.1 4 | ] TBBC and compression (dark)
‘Al
ol o mml I
A o

T T
MO.5-Enzo M2.5-Enzo

@ Subsonic transfers match results of spectral code [pebiiquy+ Pop 2011]
@ Supersonic transfers are more dynamic
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Cross-scale transfer versus scales [Grete+ PoP 2017]
Tuua Tsut
— Tuuc —— Tsup
“=== sUM ==== sUM
MO.5-Enzo M2.5-Enzo
x
.. =] ...-___;-"'~
@ Individual fluxes are not = 0.25 - ] .
constant T %
o Fluxes between regimes é’
o are similar (shape) e 0.00 A S _”””I e
e vary in magnitude 3
e Total flux (all terms) is % 014 A
constant @ > d
@ /__\ ~
b 0.0-"""| UL | T -"""I AL T
10! 102 10! 102
wavenumber k wavenumber k
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Total transfer in (or out) a shell (Grete-t PoP 2017]
Tuua Tsut
= Tuuc TusT
— Sum — sum
M0.5-Enzo M2.5-Enzo
E(k) GLJ
+ 0.05 A .
P P > c
@ Advection and © 0.00 x—= N
compression work against 3 SN IS N W i —
each other 3 0.05- ]
(2]
@ Magnetic tension & 0.00 )
transfers energy to most = '
8
scales 2 —0.05 4 7
LR | LR RLL | T HRRALL | T T
101 107 101 107
wavenumber k wavenumber k
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The energy cascades [Grete+ PoP 2017]

Kinetic cascade

Y F0.05 @

5 ] 2

E(k) -g 10 _§ e

S =1 ] 0.00 *

> 2 3

. > 107 4 5]

@ Energy transfer is local g 10 . —0.05 %

= Shell N v c

] (]

e receives energy from g , ] M2.5-Enzg - 0.05 qg’

shell N — 1 € 10% 4 e

e transfer energy to 2 ‘ I 0.00 %

shell N +1 % 10t { 7 - —0.05 g

@ Applies to (the stronger) = Yl L e 3
101 10° 101 10?

magnetic cascade, too
wavenumber Q wavenumber Q
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Transfer mediated by magnetic tension (Grete-- PoP 2017]

Mag. to kin. by magnetic tension

energy transfer energy transfer

v ]
5 1M0.5-Enzo
" 2 102 4 £ - 0.02
o §
c i
@ Energy transfer is weakly £ 1091 T 0.00
local 2 /e N i
@ Velocity and magnetic 2 M2 .5-Enzo
field exchange most 3 102 - 0.02
energy at K = Q g
. . o 1
o Energy is received from @ 10! 4 - 0.00
few larger scales @ < K /A N T
and transferred to more 101 102 101 102
smaller scales @ > K wavenumber Q wavenumber Q
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Transfer mediated by magnetic pressure (Grete-- PoP 2017]

Mag. to kin. by magnetic pressure

S {Mo.5-Enzg ] 0.0005 5
2 102 4 ' > S
E 3 N 5
2 !
> 1 0.0000
” % 101 3 lll. g
] c
o Energy transfer is even > : ; ; ; v
less local ; IM2.5-Enzo ;rrr,-l| - 0.0025
@ Much stronger in the £ 107 !
. . S 3 Jf'/ 0.0000
supersonic regime § o]
@ Similar shapes in both o - —0.0025

energy transfer

regimes 100 102 100 102
wavenumber Q wavenumber Q
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The compressive component in the magnetic cascade

E(k)

>
>

@ Overall weak (few %)

@ Very dissimilar between
regimes

Philipp Grete

Magnetic cascade via compression
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Conclusions [Gretet PoP 2017]

@ Established a method to analyze the compressible regime
e Underlying transfers between regimes
e are overall similar
e but can differ in their components and magnitudes
@ Next: exploration of parameter space (in more “realistic”
environments)

t = 4.30T K=1[0,512] K'=13.4,4] K=16.7,8] Iy K'=113.4,16]

-
e o9, 3
- &
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