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Context: we are interested in matter at extreme conditions )
relevant to fusion and astrophysical plasmas
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Understanding atomic properties plays a critical role in modeling and
understanding larger plasma systems




At the object scale, we have two basic techniques to learn
@ National
about HED plasmas:
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1. Look at them 2. Hit them with something

X-ray
radiography
(T. Awe, SNL)

Optical image of the X-ray image
Crab nebula of MagLIF
(HST) (E. Harding, SNL)




What we see depends on how we look

Images collected in different ways can reveal
gradients and internal structure ~1keV x-rays

Optical X-ray

Gomez et al PRL 2014




Beyond imaging, energy-resolved data can reveal details of )
object composition, conditions, and motion

Laboratories

A spectrum is worth a thousand pictures

~ 1 keV x-rays

Interpreting energy-dependent data
requires understanding atomic-scale
structure and response
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X-ray spectroscopy couples atomic physics and quantum )
mechanics with fusion and astrophysics
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If we understand the then we can more ...and we can more rigorously
atomic-scale response reliably simulate object- interpret experimental and
of materials in extreme scale high energy observational data

conditions, density plasmas...




Spectroscopy is the science of measuring and interpreting the
. . @ National
photons emitted and absorbed by molecules, atoms, and ions
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infrared optical x-ra¥
2 > 700 nm ¥ A ~ 300-700 nm A <10 nm
(_/ c<1eV e~1-4eV e>100 eV
prism -
Heat rainbows crystal 9
N TR TERS X-ray rainbows!!

The history of spectroscopy is intricately linked to the history of modern physics

- atomic physics and quantum mechanics

much of what we know about matter was learned through spectroscopy
- astrophysics and cosmology

“spectroscopy puts the ‘physics’ in astrophysics!”
- plasma physics and fusion research

spectroscopic diagnostics reveal details of temperature, density, fields...




A bit of history: the first energy-resolved measurements of ) e,
simple atoms revealed surprising internal structure
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Around 1900, we knew that atoms were composed of heavy nuclei + light electrons (Rutherford).
Regularity in the chemical behavior of different elements and intriguing patterns in the emission spectra of
pure materials had been observed but not explained.

1888: Rydberg equation
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A ~ 300-700 nm
e~2-4eV

In 1913, Neils Bohr proposed an empirical model of the atom that
would account for the measured spectrum of hydrogen: electrons

. . . . ~ 5
<10 nm occupy discrete, stable orbitals with energies E_ ~ (Z/n)

e>100 eV




These energy-resolved measurements were integral to the @)
development of modern quantum theory

In 1925, Erwin Schrodinger formulated an Energy eigenvalue Potential energy ~ — Z2/r
equation to described the discrete @y(r) =(r) +q;(r)
“stationary states” of a quantum particle

interacting with a potential

Kinetic energy: — p?/2m — L?/2mr?

For a one-electron atom, Schrodinger’s
equation can be solved analytically, giving
eigenvalues that match Bohr’s empirical
formula and wavefunctions that represent
electronic probability distributions

Higher precision measurements and increasingly sophisticated theory
developed in tandem throughout the 1900s




Modern theory provides exquisitely accurate predictions for @)
the structure and spectra of isolated, one-electron ions in LTE

AN energy ¢
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Unfortunately, not all ions are hydrogenic...

energy

many-electron ions
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This structure is reflected
In their emission spectra:
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Each ion of each element has a spectroscopic “fingerprint” k=
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Bohr model:
g, ~ 13.6 eV (Z/n)?

A 4s, 4p, 4d, 4f
D~ 3s, 3p, 3d
S e 2s, 2p L-shell
2 |
o :
| AVAVAY =
Y
—O 1s K-shell




Each ion of each element has a spectroscopic “fingerprint” () i
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neutral hydrogen (Z=1,n=1)

Bohr model: This plasma is
g, ~ 13.6 eV (Z/n)? K-shell hv =Ae ~ 10 eV mostly hydrogen
2p 15 [Lyri=n o) =R =L P 5p and pretty cold.

12 13
photon energy (eV)

A 4s, 4p, 4d, 4f
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Each ion of each element has a spectroscopic “fingerprint” ) s
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Bohr model: neutral hydrogen (Z=1, n = 1) This plasma is
g, ~13.6eV (Zeff/n)2 K-shell hv=Ae ~10eV mostly hydrogen
2p 1s {Lyrmain o) =p =1 P >p - and pretty cold.

photon energy (eV)
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And unfortunately, not many high-temperature @)
plasmas are in Local Thermodynamic Equilibrium (LTE)

Collisional excitation
& de-excitation LTE enables simple statistics for populations, but only

A =—— 35,3p,3d Photoexcitation . .
N .7 & radiative decay for simple environments (T, =T, , = T4 dX/dt=0...)
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And unfortunately, not all ions are isolated: High-density ) s
environments modify electronic structure s

low-density plasma

high-density plasma
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High-density environments modify electronic structure (Fn) i,

low-density plasma
*yawn*
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High-density environments modify electronic structure and )
spectroscopic signatures
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How do we produce extreme conditions in the laboratory? () &,

We compress energy in space and time using pulsed power, lasers, or undulators

Magnetization Laser Compression m
heating

SNL'’s Z machine: LLNL’s NIF: LCLS/ European XFEL.:
10 MJ = 109s, 100-1000 pum 2 MJ =2 10'%, 10-100 pum 2md 2 103s, 1Tum
0.3-3keV, 0.01 -1 g/cc 0.3-3 keV, 0.01 —100 g/cc 10eV,1-10g/cc
~2 kJ fusion ~20 kJ fusion fundamental science
>100 TW x-rays bright x-rays

fundamental HED science fundamental HED science
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Sample application: Magnetized Liner Inertial Fusion (MagLIF) (i) &,

Premagnetization: Laser preheat: jxB implosion:

External Bz field inhibits Allows slower, more Heats fuel to fusion temps;
thermal conduction stable implosions compressed Bz traps
losses (high adiabat) charged fusion products
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What does the spectrum from a MagLIF experiment tell us? () &

MagLIF is a Be liner with ~100 ppm Fe impurities
surrounding a pure-D2 fuel core

ATAY X-ray spectrum
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He-like iron K-shell lines:
some of the liner mixes
with the hot fuel in a layer
with n_ ~ 2x10%3 e/cc and
T, ~ 2000 eV

Neutral iron K-shell lines:
most of the liner is cold
(~10 eV) and very dense
(10x solid): the iron is
photoionized by radiation
from the hot core

This plasma
has big gradients.
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Is the whole hot core at the same conditions as the hot iron? (i) &

1 nm Co coating
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Fluorescence emission from iron impurities confirm significant g .
gradients and reveal density effects
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A pronounced shift in the cold KB (3p — 1s) line of iron impurities indicates
liner is at a high density, compressed to ~8x solid
The slope of the iron K-edge indicates Te ~ 10 eV, depth confirms compression
High-precision spectra help us distinguish between models of density effects
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Differential splitting can help us constrain flux-compressed @)
magnetic fields at stagnation Cu Ly B = 2x10°T €% < 0.1 £¥)
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Combining these spectroscopic diagnostics, we can build up a ;) &,
detailed picture of MagLIF at stagnation

1) hot core with: ne ~10%3 e/cc, Te = 3-4 keV, & Bz ~ 20 kT
2) warm mixed layer with ne ~ 2x10%3 e/cc, Te = 1- 2 keV
3) cool, compressed liner with ne ~ 2x10%* e/cc, Te = 10-20 eV

This detailed picture helps us rigorously validate rad-MHD
simulations and understand the impact of target design changes




How do we know if our atomic-scale models are reliable? (i) Netons

We can test them in careful, “benchmark” experiments with plasma samples that are:
1. designed to be relatively uniform
2. Independently characterized

3. carefully diagnosed -

DETAILED STUDY OF THE STARK BROADENING OF. .. 11

1 1 1

Ng-9.3X10'6

Wiese, Kelleher, and Paquette, Phys. s
Rev. A6, 1132 (1972) b wesaxios
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one of perhaps 8 high-quality

benchmark data sets for spectral -

- 1
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High-quality benchmark experiments are difficult but enduring (and highly cited!)
The closer you get to literal “benchmark™ experiments (a lump of iron on your bench), the better!
Opportunity: warm dense matter (WDM) is experimentally accessible and computationally complex




The Z Astrophysical Plasma Properties (ZAPP) collaboration S
. . @ National
aims to benchmark extreme, astrophysically relevant plasmas
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photoionized plasma]

[stellar interior upacitv] [atnmlc kinetics

Fe/Mg fni[\,

s

spectral emission from
accretion powered objects

spectral line formation in }

cell wh|te dwarf photospheres
— N
Si T ~—e——
exploding . .
foil
Z x-ray source H gas cell

1-2 MJ; 2:10* W

A consortium of Laboratory and University scientists use the TW x-ray powers
from the Z machine to heat, photoionize, and backlight benchmark plasmas




Benchmark measurements of stellar interior opacities inform )
models of our sun (helioseismology, elemental abundances)
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More recent measurements show discrepancies with models )
at more extreme conditions
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a5
(a)  spectra ?mspztfa After a refurbishment of the Z machine enabled experiments
-9° +9° at higher densities and temperatures, Bailey at al found

| . . .
surprising disagreement between models and experiments
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This is one of only a handful of benchmark experiments for
high energy density plasmas: we will be surprised again!




The measurements on Z have inspired opacity measurements )
on NIF, which (so far) show similar results.
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Work is ongoing in both experiments and opacity theory!




Conclusions (Fi) Netonar

« Spectroscopy unites the very small — atomic scale & quantum mechanics —
with the large (and VERY large!) — laboratory plasmas, fusion, and astrophysics

« X-ray spectroscopy can provide detailed information about HED plasmas beyond yields

and imaging, including plasma composition (mix), temperature, density, velocity, and EM
fields

« Benchmark-quality experiments to test atomic and spectroscopic models are difficult,
requiring careful sample preparation and independent sample characterization,
-- and they are /critical/ to increasing our understanding of models and calibrating our
confidence in plasma simulations

 Mark Herrmann: If we can measure a thing, we can make it better
For ICF experiments on NIF, Z, and Omega, X-ray and neutron spectroscopy have been
essential tools to help understand and optimize fusion target performance




Thank you!

Questions?




