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f;ey aspects of the thruster
hat we do not understand

hese anomalous processes?

‘)

model them?

Thesis: Plasma instabilities are a major driver
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M Overview

* Hall thruster principle of operation

* Anomalous processes in Hall thruster operation

* Role of plasma instabilities
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M Hall thruster principle of operation
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M Hall thruster principle of operation

Anode Hollow cathode
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Hall thruster principle of operation

Propellant

Magnetic coils

Channel-

Hollow cathode

Inner pole

-Quter pole

Hollow cathode heated until thermionically emitting electrons
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M Hall thruster principle of operation
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Channel- -Quter pole

Electric field applied between anode and cathode
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M Hall thruster principle of operation

Hollow cathode

Propellant

Magnetic coils Inner pole

Channel Quter pole

Electrons follow electric field and current flows between cathode and anode
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M Hall thruster principle of operation

Hollow cathode

Propellant

Magnetic coils Inner pole

Channel Quter pole

Magnetic field is applied in the radial direction. Electrons are trapped in E x B
azimuthal drift: Hall effect
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M Hall thruster principle of operation

Hollow cathode

Propellant

Magnetic coils Inner pole

Channel Quter pole

Neutral gas (xenon) flows through thruster anode.
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M Hall thruster principle of operation

Hollow cathode

Propellant

Magnetic coils Inner pole

Channel Quter pole

Electron azimuthal drift “buzz saw’ 1onizes neutral xenon. Plasma is created.
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M Hall thruster principle of operation

Hollow cathode

Magnetic coils Inner pole

Channel Quter pole

Ions are unmagnetized and therefore follow electric field lines directly.
Accelerated ions are neutralized by electrons in plume
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M Hall thruster principle of operation

Hall thrusters work and currently fly on hundreds of spacecraft on orbit
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M Hall thruster principle of operation

High specific impulse

I, oc\/V,  1000-3000 s

High thrust density

Y g, =0 30-500 mN

Simple PPU and control logic

1-13 kW

Hall thrusters work and currently fly on hundreds of spacecraft on orbit

‘ However, there are key aspects of their operation that we do not understand \
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Anomalous Processes in Hall Thruster Operation
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Anomalous Processes in Hall Thruster Operation

== =="

Unexplained erosion of downstream surfaces

M. Sekerak et al. “Wear Testing of a Magnetically Shielded Hall Thruster at 2000 s
Specific Impulse,” IEPC-2015-155.
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Anomalous Processes in Hall Thruster Operation

Il

Anomalously high electron
cross-field transport that cannot
be predicted by classical theory
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Anomalous Processes in Hall Thruster Operation

’ Unexplained erosion and electron
transport in region of hollow cathode

0 hrs 30352 hrs

Sengupta, A., Brophy, J. R., and Goodfellow, K. D. AIAA 03-
4558, July 2003.
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M Anomalous Processes in Hall Thruster Operation
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M Anomalous Processes in Hall Thruster Operation

Each of these mechanisms is related to the onset of plasma instabilities
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M Anomalous Processes in Hall Thruster Operation

Cathode erosion and electron transport
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Anomalous processes in the hollow
cathode plume:

Cathode erosion

Non-classical electron resistivity



University of Michigan — Plasmadynamics and Electric Propulsion Laboratory

M Anomalous ion heating leading to cathode erosion

Cathode is an electron source

o” O o~
o+ O
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M Anomalous ion heating leading to cathode erosion

o [ x)
Q>0 O

Cathode is an electron source

Plasma is quasineutral: electrons stream against
background of ions
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M Anomalous ion heating leading to cathode erosion

Cathode is an electron source

Plasma is quasineutral: electrons stream against
background of ions

Classically, background ions should be low energy
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M Anomalous ion heating leading to cathode erosion

Cathode is an electron source

Plasma is quasineutral: electrons stream against
background of ions

Classically, background ions should be low energy
However, some unknown process in plume

accelerates ions to high and damage-causing
energy
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M Anomalous ion heating leading to cathode erosion

e (Cathode is an electron source

* Plasma is quasineutral: electrons stream against
background of ions

Classically, background ions should be low energy

However, some unknown process in plume
accelerates ions to high and damage-causing
energy

0 hrs 4693 hrs 10451 hrs 21306 hrs 30352 hrs
Fig. 2 Front view of the DHC keeper at various times during the 30,000 h ELT of a 30-cm ion thruster.
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M Anomalous electron resistivity
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M Anomalous electron resistivity

Plasma current carried by electrons.
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M Anomalous electron resistivity

L —AAA—

Plasma current carried by electrons.

Plasma has an inherent resistance which is
classically due to collisions slowing down electron
motion
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M Anomalous electron resistivity

* Plasma current carried by electrons.

R e Plasma has an inherent resistance which is
classically due to collisions slowing down electron
motion

*  Some unknown mechanism provides additional
drag on electrons: R ica <<R

experimental
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Anomalous electron resistivity

* Plasma current carried by electrons.

R e Plasma has an inherent resistance which is
classically due to collisions slowing down electron
motion

*  Some unknown mechanism provides additional
drag on electrons: R ica <<R

experimental

* Plasma potentials higher in experiment than
estimates based on classical, collisional theory

L _‘ ______ ,{%}'%’ ‘} ‘{"‘ﬂ*—-}—e :E‘xperiments

]

N
@

n
H

Plasma Potential (V)
8

o
I

z (cm)

Mikellides, I., Katz, I., Goebel, D., Jameson, K. JPP 101,
063301 (2007)
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M Anomalous processes in hollow cathode

Unknown mechanism
heats the 1ons

Unknown mechanism
induces drag on electrons
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M Anomalous processes in hollow cathode

Unknown mechanism
heats the 1ons

Hypothesis (2013): both mechanisms can be
explained by the onset of ion acoustic turbulence in
the cathode plume

R

Unknown mechanism

—/W\/— induces drag on electrons
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M Ion Acoustic Turbulence

Ion --- Low frequency (1-5 MHz), electrostatic modes carried by
10n motion

Acoustic --- Waves propagate with linear dispersion relation
(frequency vs. wavenumber) at 1on sound speed

Turbulence — Spectrum of incoherent modes excited
concurrently in plume
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M Overview of Investigation into IAT Hypothesis (2013-2017)

* Start with a physical description of how IAT could lead to
anomalous cathode plume effects

* Experimentally determine if described process actually occurs
in cathode plume

* Incorporate findings into first-principles model to determine if
anomalous effects can be explained self-consistently by IAT
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M Overview of Investigation into IAT Hypothesis (2013-2017)

* Start with a physical description of how IAT could lead to
anomalous cathode plume effects
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M Ion Acoustic Turbulence (IAT) interaction with cathode plume

Cathode conditions

Ve >cs Te>1;

1) Electron drift exceeds
ion sound speed

N
e wxk

2) IAT grows at expense of
electron drift

3) Growth of IAT slows electrons

Xet /

T

Xe*\

4) IAT energy absorbed by ions through
collisionless and collisional processes
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M Overview of Investigation into IAT Hypothesis (2013-2017)

* Start with a physical description of how IAT could lead to
anomalous cathode plume effects

* Experimentally determine if described process actually occurs
in cathode plume
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M Experimental investigation into role of IAT

Diagnostic suite for
cathode testing

Cathode firing

Diagnostics 100-A LaB¢ Hollow Cathode
RPA Ion energy Discharge Current 20— 180 A
Single Langmuir probe n,, I, Flow rate 5,8,10,12, 15,20 sccm
I, probe array Wave dispersion Gas Xe
Laser Induced T; and ion drift velocity Applied Magnetic Field | None
Fluorescence (LIF)
Py 1-4 x 104T
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M Experimental investigation into role of IAT

Cathode conditions

‘/e > Cgs Te > Tz

1) Electron drift exceeds
ion sound speed

N
—~—— wxk

2) IAT grows at expense of
electron drift

3) Growth of IAT slows electrons

Xet /

T,

Xe*\

4) IAT energy absorbed by ions through
collisionless and collisional processes
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M Experimental investigation into role of IAT

Ve

‘% Cathode conditions
Vo>c, Te>T,

1) Electron drift exceeds
ion sound speed v v

Photo Density Electron temp.
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140 A and 15 sccm xenon

B. Jorns, D. Goebel, and 1. Mikellides. AIAA-2014-3826.
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Experimental investigation into role of IAT

Ve

4 N

Quasi-linear theory

v v
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) IAT groy p D wock 2 *VE,
electron drift \ dt )
1) Measurement of dispersion relation in plume 2) Evolution of IAT energy in plume
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B. Jorns, I. Mikellides, and D. Goebel. Physical Review E 90, 063106. (2014).

B. Jorns, D. Goebel, and I. Mikellides. 50th AIAA JPC. AIAA-2014-3826.
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M Experimental investigation into role of IAT

= vV <V, € Quasi-linear theory

- v

) v,,xE. 2) v, >V
3) Growth of IAT slows electrons \_ e r ) Vi
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classical

1) Use measured energy to infer effective collision frequency 2) Compare IAT driven collision frequency to

classical collisions
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B. Jorns, I. Mikellides, and D. Goebel. Physical Review E 90, 063106. (2014).

B. Jorns, D. Goebel, and I. Mikellides. 50th AIAA JPC. ATIAA-2014-3826.
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M Experimental investigation into role of IAT

xe'/ e h

g Quasi-linear theory

Xe*\ AT; X ET
4) IAT energy absorbed by ions through
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collisionless and collisional processes
! 0.08
6 140 A and 15 sccm '
>
3, <
- tri
Measured wave energy =4 -
. S 0.04 Z
and ion temperature as = =
functions of position & 3 ?S
2 0.023
H 27 . Py
: 3
P— 1 _O
0

0.5 1, 15 2:
DISTANCE FROM KEEPER (Z/Rx

C. Dodson, D. Perez-Grande, B. Jorns, D. M. Goebel,
and R. E. Wirz, 52nd AIAA/SAE/ASEE Joint
Propulsion Conference, 2016. AIAA 2016-4838.
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Experimental investigation into role of IAT

xe'/ a N

gy — Quasi-linear theory
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Correlational and causal relationship between IAT and energetic ions
persists over wide parameter space
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M Experimental investigation into role of IAT

1) Electron drift exceeds
ion sound speed

N
e wxk

2) IAT grows at expense of
electron drift

3) Growth of IAT slows electrons

Xet /

==

Xe*\

4) IAT energy dissipated by ions through
collisionless and collisional processes
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M Overview of Investigation into IAT Hypothesis (2013-2017)

* Start with a physical description of how IAT could lead to
anomalous cathode plume effects

* Experimentally determine if described process actually occurs
in cathode plume

* Incorporate findings into first-principles model to determine if
anomalous effects can be explained self-consistently by TAT.
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Modeling impact of IAT on plasma properties

Simulation

Governing equations

Continuity d;‘ +n,VV, = 0,
GGDrag77
dv,
Momentum mn, ——+Vps—ens(E+V,xB) = F, + Foan(Eq)
3dp 3 Heatlng Derived from
Energy Ed_‘ts + ips V-Ve+ps: VV, +V-q, = w,. * WS(AN)(ET) / quasilinear
theory
Wave energy OLr Vi
-VEpr = woFE e — (i — —
By, + U4 T = wolir |C ¢ o

B. Jorns, A. Lopez Ortega, and I. G. Mikellides, 52nd AIAA Joint Propulsion,
2016. AIAA 2016-4626.

A. Lopez Ortega, B. Jorns, and 1. Mikellides, Journal of Propulsion and Power
Submitted (2017).
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M Validating IAT-based terms on plasma properties

Drag
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Validating IAT-based terms on plasma properties

Drag
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Analytlcal terms for impact of IAT on governing
equations have been validated experimentally
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M Self-consistent predictive model that includes anomalous effects

140 A and 10 sccm
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M Overview of Investigation into IAT Hypothesis (2013-2017)

* Start with a physical description of how IAT could lead to
anomalous cathode plume effects

* Experimentally determine if described process actually occurs
in cathode plume

* Incorporate findings into first-principles model to determine if
anomalous effects can be explained self-consistently by TAT.
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M Anomalous processes in hollow cathode

Unknown mechanism
heats the 1ons

Hypothesis (2013): both mechanisms can be
explained by the onset of ion acoustic turbulence in the
cathode plume

R

Unknown mechanism

—/W\/— induces drag on electrons
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M Anomalous processes in hollow cathode

Unknown mechanism
heats the 1ons

Validated theory (2017): both mechanisms can be
explained by the onset of ion acoustic turbulence in the
cathode plume

R

Unknown mechanism

—/W\/— induces drag on electrons
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M Anomalous Processes in Hall Thruster Operation

Cathode erosion and electron transport
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M Anomalous Processes in Hall Thruster Operation

Cross-field transport
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el

The Problem of Anomalous Electron Transport
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M Anomalous electron transport in Hall thruster

Ideal (collisionless)
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M Anomalous electron transport in Hall thruster

Classical transport from

Ideal (collisionless) particle collisions
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Anomalous electron transport in Hall thruster

Ideal (collisionless)

Classical transport from
particle collisions

Anomalous transport
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How do electrons get across field lines?
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M Anomalous electron transport in Hall thruster

* In magnetized plasmas, electron transport
across field lines is driven by collisions

Iez X EOZVeﬂ

* C(lassical collision frequency in Hall
thruster 1s too low to allow observed
electron transport

* Models account for transport as an effective
collision frequency
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Anomalous electron transport in Hall thruster

Problem of anomalous electron transport

In magnetized plasmas, electron transport
across field lines is driven by collisions

Iez X EOZVeﬂ

Classical collision frequency in Hall
thruster 1s too low to allow observed
electron transport

Models account for transport as an effective
collision frequency

Problem of anomalous collision frequency
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el

* Problem of anomalous electron collision frequency is 50 years
old.

— Recent advances in diagnostics and theory have enabled new
progress on problem.

— Popular theory that has emerged in analog to hollow cathode
processes: acoustic-like turbulence may drive the collision
frequency
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M Ion Acoustic Turbulence (IAT) interaction with cathode plume

Cathode conditions

Ve >cs Te>1;

1) Electron drift exceeds
ion sound speed

N
e wxk

2) IAT grows at expense of
electron drift

3) Growth of IAT slows electrons

Xet /

T

Xe*\

4) IAT energy dissipated by ions through
collisionless and collisional processes
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M Mechanism for effective collision frequency in Hall thrusters

Ve=ljf><l§

1) Strong E x B drift
between electrons and ions

2) Azimuthal wave driven unstable
by drift through inverse cyclotron or
Landau damping

Vi<V,

3) Electrons slowed in E x B
direction by wave growth leads to
effective collision frequency

4) Wave convected
out of channel by
ion axial drift
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M Mechanism for effective collision frequency in Hall thrusters

Ve=l:f><l_§

1) Strong E x B drift
between electrons and ions
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Mechanism for effective collision frequency in Hall thrusters

IlIlIIlIlIlIllllIlIIlllI

2) Azimuthal wave driven unstable
by drift through inverse cyclotron or
Landau damping

x10°

Frequency (Hz)
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Tsikata, S., Lemoine, N., Pisarev, V., and Grésillon, D. M. Physics
of Plasmas. Vol. 16.,No. 3. 2009.
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M Mechanism for effective collision frequency in Hall thrusters

Vi<V,

3) Electrons slowed in E x B
direction by wave growth leads to
effective collision frequency
QL model for collision frequency as a

function of wave action

1/2

172
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Mechanism for effective collision frequency in Hall thrusters

Convective model for wave energy
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4) Wave convected
out of channel by
ion axial drift
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Results from model for collision frequency
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I. Katz, I. Mikellides, B. Jorns, and A. Lopez-Ortega. 34" IEPC. Kobe, Japan. IEPC-2015-402.
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Results from model for collision frequency
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I. Katz, I. Mikellides, B. Jorns, and A. Lopez-Ortega. 34" IEPC. Kobe, Japan. IEPC-2015-402.
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Results from model for collision frequency

L \
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However there are still many open questions about the process
Is the turbulence actually dominant?

Does it propagate in the way we think it should?

What is the correct way to model its interaction with the electrons?

I. Katz, I. Mikellides, B. Jorns, and A. Lopez-Ortega. 34" IEPC. Kobe, Japan. IEPC-2015-402.
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M On-going work into examining role of turbulence in cross-

field transport

Re-evaluating theory for effective
collision frequency

(1)1/2 1
8 mm,

Developing new experimental tools
to characterize turbulence growth
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Re-examining governing hierarchy
for turbulent energy in simulations
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Cross-field transport
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Thruster surface erosion
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The Problem of Magnetic Pole Erosion in Hall Thrusters
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Iron poles of the Hall thruster are sputtered

O hr 150 hr

M. Sekerak et al. “Wear Testing of a Magnetically Shielded Hall Thruster at 2000 s Specific Impulse,” IEPC-2015-155.

6-kW Hall effect thruster at JPL
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M Measurements show ion trajectories intersect pole pieces

Measured ion trajectories

6-kW Hall effect thruster at JPL
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B.Jorns et al. AIAA-2016-4839
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M Measurements show ion trajectories intersect pole pieces

6-kW Hall effect thruster at JPL Ion kinetic energy too low to
explain measured erosion rate
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M Measurements show ion trajectories intersect pole pieces

6-kW Hall effect thruster at JPL

Ion temperatures are anomalously high
and can explain most of the erosion
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Ion heating in this region is non-classical and is possibly
driven by turbulent heating or low-frequency ionization
modes
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Thruster surface erosion
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Onset of coherent, oscillatory modes
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The Problem of Hall Thruster Stability
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Global Hall thruster stability (breathing mode)

Electron Density Fluctuations n,(x,y,9/n
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R. Lobbia, R. B., "A Time-resolved Investigation of the Hall Thruster Breathing
Mode," Ph.D. Dissertation, University of Michigan, 2010.

Coherent large scale oscillations in plume and discharge current occur on the 10-100 kHz scale
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Global Hall thruster stability (breathing mode)
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strongly on operating condition

There has been some work on 1:3\ 0'4__ |
explaining these trends with ™~ sl _

numerical work*

021

We are actively investigation a first- 01
principles description of this oscillation '

*K. Hara et al. Journal of Applied Physics. 115, 203304 (2014) BT/B*
M. Sekerak et al. Journal of Propulsion and Power. Vol. 32, No. 4 (2016)
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Onset of coherent, oscillatory modes Cross-field transport
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Instabilities can cause problems!

Thruster surface erosion Cathode erosion and electron transport
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Summary

* Electric propulsion is a key enabling technology for commercialization and exploration of
space

* Hall thrusters are particularly attractive form of EP

* Although Hall thrusters are currently flown, there are key aspects of operation that we do not
understand. This poses a challenge for qualifying this technology for more ambitious
missions. Anomalous aspects of operation include

Stability
Erosion of thruster face
Cross-field transport

Cathode erosion and resistivity

* In all cases, plasma instabilities play a role (if the anomalous effects were classical, we would
have predicted them already!)

* Previous and on-going work seeks to understand these instabilities from first-principles in
such a way as to model and potentially mitigate the anomalous processes
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