

Time-resolved Electron Energy Distribution Functions: Preliminary Results and Development of a Rapidly Swept Langmuir Probe System

Robert B. Lobbia^(a) and Alec D. Gallimore^(b)

The University of Michigan, Ann Arbor, ^(a) Postdoctoral Research Fellow, lobbia@umich.edu, ^(b) Arthur F. Thurnau Professor, alec.gallimore@umich.edu

1000 kHz

1st Annual Michigan Institute for Plasma Science and Engineering (MIPSE) Graduate Student Symposium The University of Michigan, Ann Arbor, September 29th 2010

Motivation for High-speed Langmuir Probing

Plasmas exhibit wide bandwidth of oscillatory modes:

- 1 kHz 10 GHz, typical
- Modes arise from electromagnetic interactions between particles and the imposed magnetic and electric fields
- For Hall effect thrusters, prior research has identified several modes experimentally and theoretically; but with limited temporally and spatially resolved plasma measurements

Limited pre-existing measurements

High-speed plasma measurements are difficult due to fast timescales, high-voltages, and low-currents

Effects of transient plasma processes poorly understood

• Breathing mode oscillations in Hall thrusters have previously been seen as detrimental to thruster

Lower hybrid

Drift spoke mode

Time-resolved Plasma Properties

Understanding of Electron Energy Distribution Functions (EEDF) temporal variations during Hall thruster breathing mode transients and other unsteady plasma discharges is critical to improving device performance

[4] R. Lobbia and A. Gallimore, Information Fusion, 2009. FUSION '09. 12th International Conference on, pp. 678-685, 2009.

[5] R. Lobbia "A Time-resolved Investigation of the Hall Thruster Breathing Mode," Ph.D. Dissertation, University of Michigan, 2010.

Sponsors:

