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Investigation models turbulent radiation hydrodynamics in the diffusion

approximation and evaluates its effects on radiative blast waves

Radiation transport, shock physics, and turbulence are intimately
coupled in several HEDP and astrophysical environments

Supernovae, competing processes in stellar life cycles, black hole
dynamics
Z-pinches, high-energy laser experiments

Blast waves created by such phenomena are susceptible to instabilities
Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov

Theoretical and experimental studies typically focus on one or two of
the processes: radiation, shock physics, turbulence

This study models radiation hydrodynamics via equilibrium diffusion and
turbulence by a Reynolds-averaged Navier-Stokes (RANS) model
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Radiation fields directly influence hydrodynamics in extreme

temperature and pressure environments

Radiation to hydrodynamic pressure ratio = aRT 4/(3ρc2
s )

Radiation quickly dominates system as temperature increases
pM
pR

(T = 106K ) ≈ 5.95× 10−3 , pM
pR

(T = 107K ) ≈ 6.55× 10−6
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Reynolds and Favre decompositions along with gradient-diffusion

approximations are used to provide closed turbulent transport equations

Reynolds and Favre averaging can be expressed as ordinary and
density-weighted temporal means, respectively

φ = lim
τ→∞

1
τ

Z t+τ

t
φ(x, t) dt , eϕ =

1
ρ

lim
T→∞

1
T

Z t+T

t
ρ(x, t)ϕ(x, t) dt

Reynolds and Favre decompositions are given by:
ρ = ρ+ ρ′ , p = p + p′ , ER = ER + E ′R , Fj = F j + F ′j
vj = evj + v ′′j , U = eU + U′′ , T = eT + T ′′

Averaging system of interest and using decompositions leads to
fluctuating correlations closed via gradient-diffusion closures

Gradient-diffusion approximation uses turbulent kinetic energy, K , and
dissipation rate, ε, to form the turbulent viscosity needed for the closures

νt = Cµ
K 2

ε
=
µt

ρ
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Turbulent radiative gas dynamics is achieved by Reynolds averaging

equilibrium diffusion model and generalizing gradient-diffusion closures

Given total energy ρ eE = ρ
“ev 2/2 + eU + K

”
+ ER , total pressure p∗ = pM + pR ,

Reynolds stress tensor τij , and radiative pressure dilatation Π∗, the first five
model equations are
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Turbulence contributions introduced via mean radiative flux introduce

need for transport equations for density and temperature variances

Classical and mean radiative fluxes with opacity model ΣA(ρ,T ) for 1 ≤ n ≤ 3
are

F n
j =

c

3 ΣA(ρ, T )

∂ ER

∂xj
, ΣA(ρ, T ) = β

ρ

T n

F n=1
j = −
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Compressible turbulent and PDF closures are used in density variance, ρ′2, and
temperature variance, T̃ ′′ 2, transport equations development
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Rankine-Hugoniot jump relations ensure total mass, momentum, and

energy conservation and provide post shock relations

Exact relations for profiles behind strong turbulent-radiative shocks as functions
of shock speed, evs , are given by

Density :
ρ2
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As a check, results for a strong classical shock are obtained when removing
turbulence and radiative effects

ρ2

ρ1
=
γ + 1
γ − 1

, v2 =
2 vs

γ + 1
, p2 =

2 ρ1v2
s

γ + 1
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Weighted Essentially Non Oscillatory (WENO) and Riemann solvers will

be used to simulate proposed turbulent radiation hydrodynamics model

Sod reference problem is used to test early stage computational work
Problem depicts two regions (γ = 1.4) under conditions:

ρ1 = 1.0 , p1 = 1.0 , v1 = 0 || ρ5 = 0.125 , p5 = 0.10 , v5 = 0

SURVEY OF FINITE DIFFERENCE METHODS 13 

switch. The one chosen was suggested by Hyman [13]. Replace +;+“+a in (45a) by 

iwi* where 

B = f, if a;+1 > ain + @x/3) 

= 1, otherwise. 

This type of switch greatly reduces the smearing of the contact discontinuity as well as 
the shock wave. This switch is a type of artificial compression. 

3. THE SHOCK TUBE PROBLEM 

Figure 2 represents the initial conditions in a shock tube. A diaphragm at x,, 
separates two regions (regions 1 and 5) which have different densities and pressures. 

The two regions are in a constant state. The initial conditions are p1 > p5 , p1 > p5 , 

and u1 = U, = 0; i.e., both fluids are initially at rest. At time t > 0 (see Fig. 3) the 
diaphragm is broken. Consider the case before any wave has reached the left or right 
boundary. Points x1 and x, represent the location of the head and tail of the rare- 
faction wave (moving to the left). Although the solution is continuous in this region 
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FIG. 2. Shock tube at t = 0. 

5 xO =2 “3 x4 

FIG. 3. Shock tube at t > 0. 
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FIG. 2. Shock tube at t = 0. 
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FIG. 3. Shock tube at t > 0. 
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Ongoing and future work, and special thanks

Physics of underlying turbulent radiative shocks has been investigated
An equilibrium diffusion model describes radiation hydrodynamics
A four-equation Reynolds-averaged Navier-Stokes (RANS) model is used
to describe turbulence effects
Gradient-diffusion and similarity closures were generalized to account for
radiative effects

WENO methods and approximate Riemann solvers will be used for
conducting numerical investigations

Particular interest lies in studying these processes in planar, cylindrical,
and spherical geometries for applications relevant to supernovae, black
hole dynamics, high-energy laser experiments, and Z-pinches

Propose experiments that can be used to verify this model
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