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Introduction

• Surface roughness may assume many forms

– Impurities or foreign objects

– Manufacture tolerance, same material as the surface

– Grain boundaries

• Surface roughness may lead to• Surface roughness may lead to

– Enhanced RF power loss

– Local electric field enhancement, breakdown

– Local magnetic field enhancement, quenching in a 
superconducting cavity, i.e., rapid loss of superconductivity



Outline

• Model

• RF absorption on flat metal surface

• RF absorption due to surface roughness

• Electric field enhancement due to surface roughness

• Magnetic field enhancement due to surface roughness

• Conclusion
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• Surface roughness is represented by a hemispherical 

protrusion of radius a << λ
ε, µ, and σ of protrusion assume arbitrary values

- protrusion may represent foreign object or same material

Approach

• Accurately and self-consistently calculate RF electric 

field and RF magnetic field in presence of protrusion

• Perturbed eigenvalue gives enhanced RF loss,  

Perturbed eigenfunction gives RF field enhancements



Hemispherical protrusion on the surface 
(a << λexterior)
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Hemispherical protrusion on the surface
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The irregular geometry “hemispherical 
protrusion on a surface” transformed 
into an equivalent, but highly 
symmetrical problem “spherical 
particulate in a spherical cavity”
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For both TE110 & TM110 mode,

(A) Perturbation on Eigenvalue gives power dissipated by 
particulate[1]

Hemispherical protrusion on the surface
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(B) Perturbation on Eigenfunction gives RF field enhancements
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[1] W. Tang, H. Bosman, Y. Y. Lau and R. M. Gilgenbach,

J. Appl. Phys. 97, 114915 (2005)

Note: (a) (ɛr, σ, µ) of protrusion may be arbitrary.

(b) Perturbed TE110 & TM110 mode calculated exactly, consistent  

with full set of Maxwell equations.



RF Power absorption due to small 
hemispherical protrusion on the surface 
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αE: Electrical polarizability
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αH: Magnetic polarizability
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Comparison of RF Power absorption due to 
uncorrelated small hemispherical protrusions 

I. If protrusions & flat surface of same conducting materials, δ = δs
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III. If protrusions are foreign objects with maximum αH, the maximum 

ohmic loss through the RF magnetic field is
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RF Electric field enhancement
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[2] J. H. Jeans, the mathematical theory of electricity and magnetism 

(4th Edition, Cambridge University Press, Cambridge, 1920), p. 194.



Electric field enhancement due to 
hemispherical protrusion on the surface 
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RF Magnetic field enhancement
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[3] A. C. Rose-Innes and E. H. Rhoderick, Introduction to 

Superconductivity (Pergamon Press, Glasgow, Scotland, 1969), p. 68.
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Magnetic field enhancement due to 
hemispherical protrusion on the surface 
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Conclusion

• The RF absorption by a small hemispherical protrusion is accurately
calculated for arbitrary values of (εr, σ, µ).

• A (non-magnetic) metallic protrusion dissipates a lot more magnetic
RF energy than the electric RF energy if δ << a.

• RF electric and magnetic field enhancements are calculated from
the perturbed eigenfuctions, and confirmed by MAXWELL 3D code.the perturbed eigenfuctions, and confirmed by MAXWELL 3D code.

• Since the scaling laws are constructed for all ω, σ, ε, µ, the
enhanced surface resistance may readily be assessed, once the
distribution and composition of the surface roughness is postulated.

• Essentially calculated the scattered radiation of an arbitrary incident
wave by a protrusion.

Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, "Analysis of radio-

frequency absorption and electric and magnetic enhancements due to 

surface roughness", J. Appl. Phys. 105, 114908 (2009).


