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Overview
Motivation
The numerical solution to many problems in applied physics involve the
evaluation of spatial or spatio-temporal convolutions, i.e., potentials.

Iterative solution of (boundary) integral equations
Marching-on-in-time (MOT) methods for time domain integral equations
Computation of forces and energies in molecular/particle dynamics
Evaluation of the Hartree/Fock fields in electronic structure calculations

Cost of evaluating spatial potentials: O(N2
s )

Cost of evaluating spatio-temporal potentials: O(N2
sN

2
t )

With ACE, these are reduced to O(Ns) and O(NsNt log2(Nt))

Problem Statement

We consider some open domain, Ω ⊂ RD, in which some ‘source’ func-
tion, ρ(~r) is supported.
ρ(~r) gives rise to some potential, φ(~r), that obeys the following equation:

Lφ(~r) = ρ(~r), ~r ∈ Ω T φ(~r) = b(~r), ~r ∈ ∂Ω (1)

L is a linear operator, the inverse of which is associated with some
Green’s function, G(~r,~r′), uniquely determined defined by boundary
conditions embodied by T .
The resolution of φ(~r) can be reduced to convolution(s) of the form:

φ(~r) =

∫
dD~r′G(~r,~r′)f (~r′)→ Φ = GP (2)

Sampling/calculating ρ(~r) and φ(~r) at N points→ Φ and P

Convolution = matrix-vector multiplication→ O(N2) cost
The ACE algorithm reduces this cost to O(N)

ACE Algorithm
History and Features

ACE is a hierarchical, tree-based method, similar in spirit to the Fast Mul-
tipole Method (FMM) of Greengard and Rokhlin. It has been applied to
the solution of numerous problems:

Evaluation of pairwise potentials with long-range interactions, i.e.,
V (||~r−~r′||) = ||~r−~r′||−ν,∀ν ∈ R
Wideband, multiscale EM/optics problems in free space.
Electrically dense periodic EM/optics problems.
Time domain problems with diffusive/dissipative tails (diffusion, lossy
wave, and Klein-Gordon potentials)
Lienard-Wiechert and time domain Floquet potentials
Generalized periodic problems, including Yukawa and Coulomb fields

Some of the salient features of ACE include:
Totally linear cost in terms of memory and FLOPs
Amenability to non-uniform discretization
Exact up/down tree traversal
Nearly kernel independent

Algorithmic Details

The ACE algorithm maps the matrix-vector product in Eqn. (2) onto:

GP = GnearP +AACE(P) (3)

Gnear is a sparse matrix with O(N) entries that describes ‘near’ interac-
tions, and AACE is a composition of operators that effects the remaining
‘far’ interactions.

The ACE algorithm essentially reduces to two components:
A means of distinguishing between ‘near’ and ‘far’ interactions
Addition theorems that formalize the manner in which ‘far’ interactions
are effected in O(N) time→ tree traversal

This is facilitated by constructing an octree decomposition of Ω

Ω is embedded inside a cubic domain
and recursively divided into smaller
cubic boxes until desired level of re-
finement is achieved.
(Right) 4 level octree decomposition
of Ω for a periodic problem. Interac-
tion list for the dark blue box is color-
coded.

Blue boxes are in the nearfield, light blue boxes are in the farfield, and
red boxes are accounted for at a higher level of the tree.

Tree traversal effects the farfield contribution to the total potential by the
construction of a hierarchical expansion in Cartesian harmonics.

C2M: Point sources aggregated to
create multipole tensors, M(n)

M2M: Multipole origins
shifted/aggregated
M2L: Multipole expansion trans-
lated to local expansion, L(n)

L2L: Local origins
shifted/disaggregated
L2O: Local tensors mapped onto
potential at point observers

Multipole to local translation maps onto Taylor Expansion for the
Green’s function truncated at P th order:

L(n) =

P∑
m=n

1

n!
M(m−n) · (m− n) · ∇(n)G(|~rpo −~rps|) (4)

Formulation in terms of totally symmetric Cartesian tensors bolsters ef-
ficiency relative to conventional Taylor-based methods.

Results
Error Convergence

Error in the ACE expansion was calculated for G(|~r −~r′|) = |~r −~r′|−2.2

for trees of varying height, Nl, and different ACE expansion orders, P .

P Nl = 3 Nl = 5 Nl = 7 Nl = 10

2 3.268070962493116E − 003 3.268070962493099E − 003 3.268070962493107E − 003 3.268070962493042E − 003

5 2.866109269813751E − 005 2.866109269813507E − 005 2.866109269812455E − 005 2.866109269808440E − 005

8 4.207517301400774E − 007 4.207517302158528E − 007 4.207517301963213E − 007 4.207517301868480E − 007

11 7.470454043399749E − 009 7.470454038637677E − 009 7.470454030684618E − 009 7.470454009643825E − 009

Error decreases rapidly in P , independent of the height of the tree.
This is a demonstration of the exact up/down tree traversal operators
specific to ACE.

Relative ACE error for a spatio-temporal potential (diffusion) was eval-
uated and compared to an exact result.

Relative error decreases very rapidly with the order of the ACE expan-
sion. 12 digits are retained for a 9th order expansion.

Relative ACE error for periodic long-range potentials were evaluated
and compared to an exact results.

Error for doubly periodic (left) and triply periodic (right) systems all con-
verge rapidly in P , nearly independent of potential.
Presently, Dan Dault is implementing time domain periodic ACE.

Scaling

The doubly periodic Helmholtz potential was evaluated using ACE, tim-
ings were measured to illustrate scaling in the frequency domain.

Scaling of precomputation (left) / tree traversal (right) with varying P .
Precomputation scales sublinearly in the number of levels, tree traver-
sal scales as O(N1.03

s ) in the worst case.

Spatio-temporal potentials accelerated using ACE in space, and 1 of 2
temporal schemes: FFTs or recursive block-Toeplitz compression.

Scaling in space (left) / time (right) for both FFT- and compression-
based schemes, compared to direct convolution.
Considerable savings: O(N2

sN
2
t )→ O(NsNt log2(Nt))

Parallelism
Tree-based methods are manifestly difficult to parallelize.
Our MPI implementation of ACE has high parallel efficiency due to a
parallel algorithm designed by alumnus, Melapudi Vikram.

Points Distributed across pro-
cessors based upon spatial
partitioning.
Local tree built on each pro-
cessor, filling entire computa-
tional domain.

Nodes appear in more than one processor → post-order traversal of
local tree→ natural means of assigning a native processor.
Redundancy all the way up the tree leads to implicit load balancing.

Parallel efficiency of tree traversal was measured for two different point
distributions - a cubical volume (left), and a spherical surface (right) -
for a composite Lennard-Jones/Coulomb force field.

Different lines correspond to different problem sizes.
Parallel efficiency of 96%+ for up to 1024 processors and 80 million
particles.

Total runtime for a single force/potential evaluation was measured as
the number of particles and number of processors are varied.

Regression indicates linear scaling in all cases - N1.03 scaling at worst.

Conclusions
The ACE algorithm is a flexible and efficient framework for the evaluation
of spatial and temporal convolutions that arise in the solution of numerous
partial differential equations and integral equations. To this end, we have
demonstrated:

Convergence to arbitrary error with expansions of increasing order
Linear scaling evaluation of pairwise potentials, and accelerated spatio-
temporal potentials.
Parallel efficiency for very large problems.
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