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MOTIVATION & METHODOLOGY NUMERICAL APPROACH
. . . DSMC-PIC method for non-equilibrium
Key Motivation: Desire to evaluate plasma:
heavy-species collision models in a -- Developed since the 1960’s.

-- Charged particles move in physical space.
-- Particles possess molecular properties, e.g.
u’ (thermal velocity).

plasma environment which is much
simpler than a Hall etffect thruster.

- Cell size dx~6, time step dt~1/w. Inner Cylinder (IC)
Speciﬁc Goal: Refine heavy-species -- Self-consistent electric fields, E. Wl b = 0V 152 mm A 5
: : : : -- Collisions handled statistically. -
interactions for kinetic methods.  Charge (CEX) and momentum (MEX) 2413 mm :
exchange. D=0V dd/dx = 0 db/dx = 0 =
Methodology: Use kinetic, particle-in- S = .e------------l------:r’
cell (PIC) tool, MONACO-PIC (MPIC)
to Study elastic and inelastic heavy- Our tool: MONACO-PIC (MPIC) Our domain: the "test. cell" by Wirz, et al*!. @ UCLA:
, —- 2d cylindrical, -- Axi-symmetric domain.
SPECIes Processes. -- Held at specific background pressures.

.- Perform numerical counterpart to - Parallelized,

representative experiment @ UCLA

-- Upgrade and refine new ditferential
cross-section and post-collision
scattering models.

-- Compare results and analyze
disparities

-- Injection beam of 1500 eV xenon ions.
-- Two regions of interest: Inner Cylinder (IC) and Exit
Plate (EP)

General Numerical Parameters: 700,000 to 8,000,000 particles, 1x10° s timestep,
corresponding to an injection beam velocity of 47,000 m/s @ 29 nA.

EVOLUTION OF SCATTERING MODELS CURRENT DENSITY RESULTS
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LS, Isotropic vs. Anisotropic (300 V): Anisotropic (300 V) vs. Anisotropic (1500 V):
-8 -- Scattering behaviour fundamentally different. -- Scattering behaviour changes slightly
-- New model leads to less intermediate angle -- Refined model leads to even less intermedaite
scattering (predicted) angle effects.
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Refined anisotropic model brings IC current collection closer to experiment.
-- Less intermediate scattering events leads to less current collected.
-- Exit plate (EP) trends do not follow experiment and require further investiagtion.

\/

Anisotropic (300 V): Uses differential cross-section
fit of Scharfe, et al.'?!, which is fit toa 300 V
interaction, an energy most relevant to Hall effect

SPATIAL CURRENT VISUALIZATION
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Anisotropic (1500 V): Uses methodology of Dressler, 5|
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curve, resulting in less "intensity" at intermediate

Spatial distribution of current is important for future experimental design:

angles. Fitting Parameter| Value r\é;l:ga -- Can visualize decrease in intermediate scattering angles.
" o | oo -- Future experimental comparisons possible due to segmented electrode design.
Total cross-section always conserved. 5 21 | 3508
A -1.098 | -1.38
B 153 | Lel SUMMARY & FUTURE

Successfully increased fidelity of heavy species interaction models in MONACO-PIC
-- Refined, anisotropic model fits best with experimental comparison.
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