Effects of detailed charge exchange interactions in DSMC-PIC simulation of a simplified plasma test cell Paul N. Giuliano^(a) and Iain D. Boyd^(b) Nonequilibrium Gas & Plasma Dynamics Laboratory (a) Ph.D. Candidate, (b) James E. Knott Professor of Aerospace Engineering 2nd Annual Michigan Institute for Plasma Science and Engineering (MIPSE) Graduate Student Symposium The University of Michigan, Ann Arbor, September 21st 2011 #### MOTIVATION & METHODOLOGY Key Motivation: Desire to evaluate heavy-species collision models in a plasma environment which is much simpler than a Hall effect thruster. Specific Goal: Refine heavy-species interactions for kinetic methods. Methodology: Use kinetic, particle-incell (PIC) tool, MONACO-PIC (MPIC) to study elastic and inelastic heavyspecies processes. - -- Perform numerical counterpart to representative experiment @ UCLA - -- Upgrade and refine new differential cross-section and post-collision scattering models. - -- Compare results and analyze disparities #### **NUMERICAL APPROACH** #### **DSMC-PIC** method for non-equilibrium plasma: - -- Developed since the 1960's. - -- Charged particles move in physical space. - -- Particles possess molecular properties, e.g. u' (thermal velocity). - -- Cell size $dx \sim \delta$, time step $dt \sim 1/\omega$. - -- Self-consistent electric fields, E. - -- Collisions handled statistically. - -- Charge (CEX) and momentum (MEX) exchange. #### Our tool: MONACO-PIC (MPIC) - -- 2d cylindrical, - -- Parallelized, - -- Ions & neutrals → particles, - -- Electrons → Boltzmann. Our domain: the "test cell" by Wirz, et al^[4]. @ UCLA: - -- Axi-symmetric domain. - -- Held at specific background pressures. - -- Injection beam of 1500 eV xenon ions. - -- Two regions of interest: Inner Cylinder (IC) and Exit Plate (EP) **General Numerical Parameters**: 700,000 to 8,000,000 particles, 1x10⁻⁸ s timestep, corresponding to an injection beam velocity of 47,000 m/s @ 29 nA. ## **EVOLUTION OF SCATTERING MODELS** **Isotropic**: Uses total cross-sections of *Miller*, et al. [1], in which a post-collision scattering angle is assigned randomly via a unit-sphere. Total cross-section: $\sigma_{\text{CEX}} = 171.23 - 27.2 \log(g) \text{ Ang}^2$ $\sigma_{\text{MEX}} = \sigma_{\text{CEX}}$ Anisotropic (300 V): Uses differential cross-section fit of *Scharfe*, et al.^[2], which is fit to a 300 V interaction, an energy most relevant to Hall effect Curve-fit: $d\sigma/d\Omega = \theta^{Ael}10^{Bel} + (90-\theta)^{Act}10^{Bct}$ | Fitting
Parameter | Value | |----------------------|--------| | $A_{_{el}}$ | -2.02 | | $B_{_{el}}$ | 3.24 | | $A_{_{ct}}$ | -1.098 | | $B_{_{ct}}$ | 1.53 | Anisotropic (1500 V): Uses methodology of Dressler, et $al^{[3]}$., to calculate a refined curve-fit for the Scharfe curve, resulting in less "intensity" at intermediate angles. Total cross-section always conserved. | Fitting Parameter | Value | Value,
refined | |-------------------|--------|-------------------| | $A_{_{el}}$ | -2.02 | -2.502 | | $B_{_{el}}$ | 3.24 | 3.508 | | $A_{_{ct}}$ | -1.098 | -1.38 | | $B_{_{ct}}$ | 1.53 | 1.61 | # **ISOTROPIC** Isotropic vs. Anisotropic (300 V): - -- Scattering behaviour fundamentally different. - -- New model leads to less intermediate angle scattering (predicted) - Anisotropic (300 V) vs. Anisotropic (1500 V): - -- Scattering behaviour changes slightly - -- Refined model leads to even less intermedaite angle effects. ### **ELECTRODE CURRENT COMPARISONS** Refined anisotropic model brings IC current collection closer to experiment. - -- Less intermediate scattering events leads to less current collected. - -- Exit plate (EP) trends do not follow experiment and require further investigation. - Spatial distribution of current is important for future experimental design: - -- Can visualize decrease in intermediate scattering angles. - -- Future experimental comparisons possible due to segmented electrode design. #### **SUMMARY & FUTURE** Successfully increased fidelity of heavy species interaction models in MONACO-PIC - -- Refined, anisotropic model fits best with experimental comparison. - -- Future experimental methods will allow spatial current collection somparison. - -- There is a need for more physics: SEE current adjustment, metastable species, etc.