Radiative Reverse Shock Laser Experiments
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Background on Cataclysmic Variables Experimental Progression

_ _ _ _ _ In many Cataclysmic Binary systems, mass onto an accretion disk produces a ‘hot spot’
Cataclysmic Variables (CVs) are binary systems comprised of a white where the infalling supersonic flow obliquely strikes the rotating accretion disk. This

dwarf (WD) and a companion low mass main-sequence star. The nature collision region has many ambiguities as a radiation hydrodynamic system, but shock - | | |
of CVs depends primarily on the gas flow from the cool secondary star to development in the infalling flow can be modeled. Depending upon conditions, it has Normal incidence flows with Al wall. Multiple target designs

the white dwarf.

August 2010 - half day campaign on OMEGA-60

been argued (Armitage & Livio, Apd 493, 898) that the shocked region may be optically
thin, thick, or intermediate, which has the potential to significantly alter the hot spot’s
structure and emissions.

The Physics of Fluids and Plasmas, by A.R. Choudhuri Primarv d iagnOStiCS

With enough material over-flow  DANTE — x-ray spectrometer
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tion disk forms: ’ _ _ - experimental target at set of absolutely characterized
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radiative reverse shock at the Omega-60 laser facility. Obtaining a radiative reverse : " " .
« Roche lobe overflow throuah L1 _ : _ - - mass density, shock position, are positioned to view the
9 shocki in the Iaboratory requires producing a sufficiently fast flow (> _10(.).km/s) W|.th|r_1 a and morphology spectral soft x-ray emission
material whose opacity is large enough to produce energetically significant emission e

» Coherent supersonic stream from experimentally achievable layers. We will discuss the experimental design, the

i shock.
ggggre]gg?fs\{[\;? =l available data, and our astrophysical context. Insight to further iterations of the
o experiment will also be presented. . SOP — optical pyrometer

* ‘Hot spot’ formed at collision of / used to detect the thermal

stream and disk : : : emission from the target and

*wp Proof-of-Principle Experiment allow for time-streaked

‘Hot spot’ or bright spot, temperature measurements.
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IS a strongly radiating reverse SPACE

shock that occurs at the obliquely colliding flow of the stream to the disk. | | ong-term Experimental Question: In colliding winds where a less dense stream impacts a
(see diagram in next section) denser stream, how do the morphology and light curves vary as the optical depth of the
shocked layer changes from thin to thick?

The shocked stream radiates as much or more energy at optical

wavelengths as the WD, secondary, and disk combined. : : Reverse shock
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1-D (HYADES) and 2-D (CRASH) Simulations

— Low accretion rate systems =» optically thin to intermediate

— High accretion rate systems =» optically thick

: : : _ .. _ At 32 ns after drive At 31 ns after drive
Simulations using different EOS’s to distinguish these

systems, show very different structure in the hot spot region HYADES ~ Tmes=2riosesents smireashok  Both 1D and 2D simulations < uDMXreceived great data from reverse shock emission.
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