Self-Consistent Simulation of Microwave PACVD Reactors for Diamond Growth

MICHIGAN STATE

C. S. Meierbachtol 1 , B. Shanker 1,2 , T. A. Grotjohn 1

¹Department of Electrical & Computer Engineering, ²Department of Physics & Astronomy, Michigan State University, East Lansing, MI

meierbac@egr.msu.edu

Abstract

Recent Microwave Plasma-Assisted Chemical Vapor Deposition (PACVD) experiments at higher pressures have reported faster diamond growth rates and higher quality samples.[1] This transition necessitates the development of numerical models that can accurately capture the underlying physics in this new pressure regime. A flexible-geometry, multi-physics, self-consistent simulation of hydrogen-based plasmas for microwave PACVD reactors is being developed.

Motivation

- Higher pressures for Microwave PACVD reactors result in:[1]
- 1. Faster growth rates
- 2. Better quality diamond
- Development of multi-physics simulations at higher pressures will:
- Aid in development of new reactors
- Help understand underlying mechanisms
- As a first step, a geometry-flexible, moderate pressure, fluid based, multiphysics simulation is being developed
- To demonstrate flexibility, two reactor geometries used:
- 1. f = 915 MHz, (Université Paris Nord)
- 2. f = 2.45 GHz, (Michigan State University)

Problem Statement

Geometry

Labeled schematics for both reactors are provided in Figure 1.[2, 3] The electromagnetic simulation comprises of the entire reactor cavity, while the plasma simulation is solved only within the bell jar region.

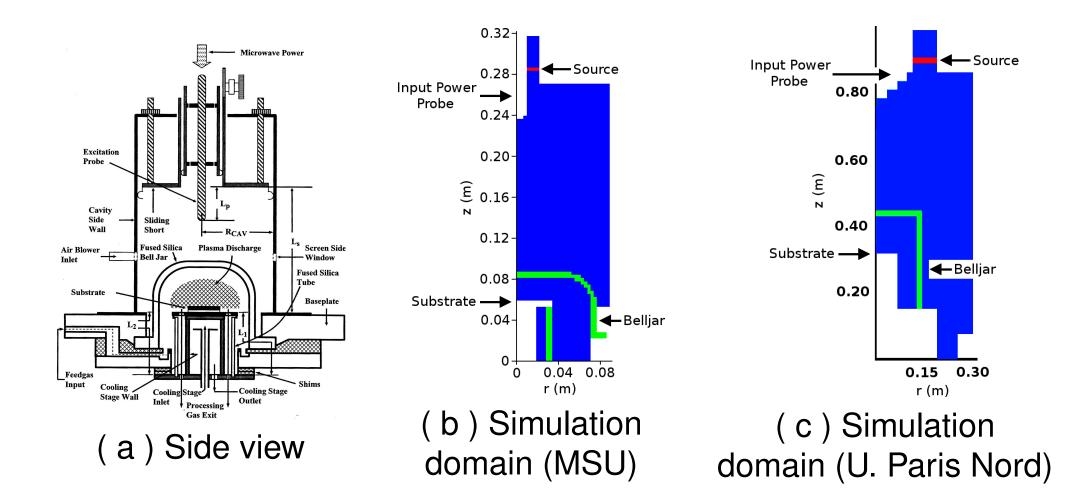


Figure 1: (a) Complete side view of MSU Microwave PACVD reactor and (b) half-space numerical analog, and (c) Université Paris Nord reactor.

Electromagnetics

- Microwave energy introduced into the reactor cavity via a waveguide (see Source)
- Energy absorbed by the high frequency oscillations of electrons within plasma (above the substrate)

Glass bell jar confines plasma and hydrocarbon gas

- Reactor cavity is designed to support a (TM_{01i}) modes; i = 3,4
- A Finite-Difference Frequency Domain (FDFD) model was chosen over the standard Finite-Difference Time Domain (FDTD) for two reasons:
- Computational efficiency
- Inherent steady-state solution
- Electron Energy Distribution Function (EEDF) included as frequency-domain complex electrical conductivity,

$$\vec{J_e} = \sigma \vec{E}$$
 (1a)

$$\sigma = \frac{q_e^2 n_e}{m_e} \left(\frac{\nu_{eff} - j\omega}{\nu_{eff}^2 + \omega^2} \right) \tag{1b}$$

• Absorbed power calculated: $\mathcal{P}_a bs = \vec{J}_e \cdot \vec{E}$

Plasma

Hydrogen ions and electrons included: H_2 , H, H(n=2), H(n=3), H^+ , H^{2+} , H^{3+} , H^- , and e^- .[2] The continuity equations and energy balance equations govern the plasma physics:

$$\nabla \left(\rho \frac{M_s}{M} D_s \nabla x_s \right) + W_s = 0 \tag{2}$$

$$\nabla \left(\lambda_v \nabla T_v + \lambda_{e^-} \nabla T_{e^-} + \lambda_g \nabla T_g - \rho \sum_s D_s h_s \nabla x_s \right) + \mathcal{P} - Q_{rad} = 0$$
 (3)

where \mathbf{x}_s is the molar fraction of species s. These equations are coupled and non-linear in nature. A Gauss-Seidel iterative solver is used to converge toward a solution.

Boundary Conditions

The gas temperature is initially set to 1200 K at the substrate surface, and 600 K at the wall of the quartz dome.[2] The azimuthal symmetry of the problem forces the \hat{r} components to have zero value at the r=0 axis, while zeroed Neumann conditions are applied to \hat{z} fields.

Solution Process

An *initial guess* conductivity is required to start the simulation (ensuring non-trivial absorbed power). An overview of the solution process is provided in Figure 2.

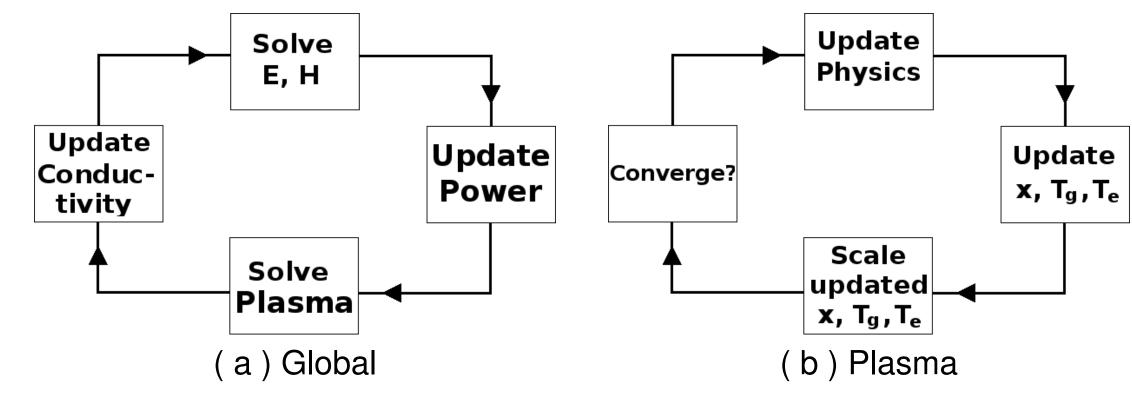
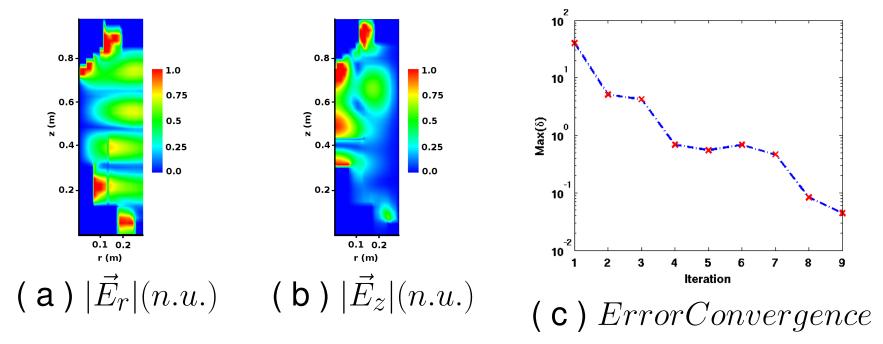
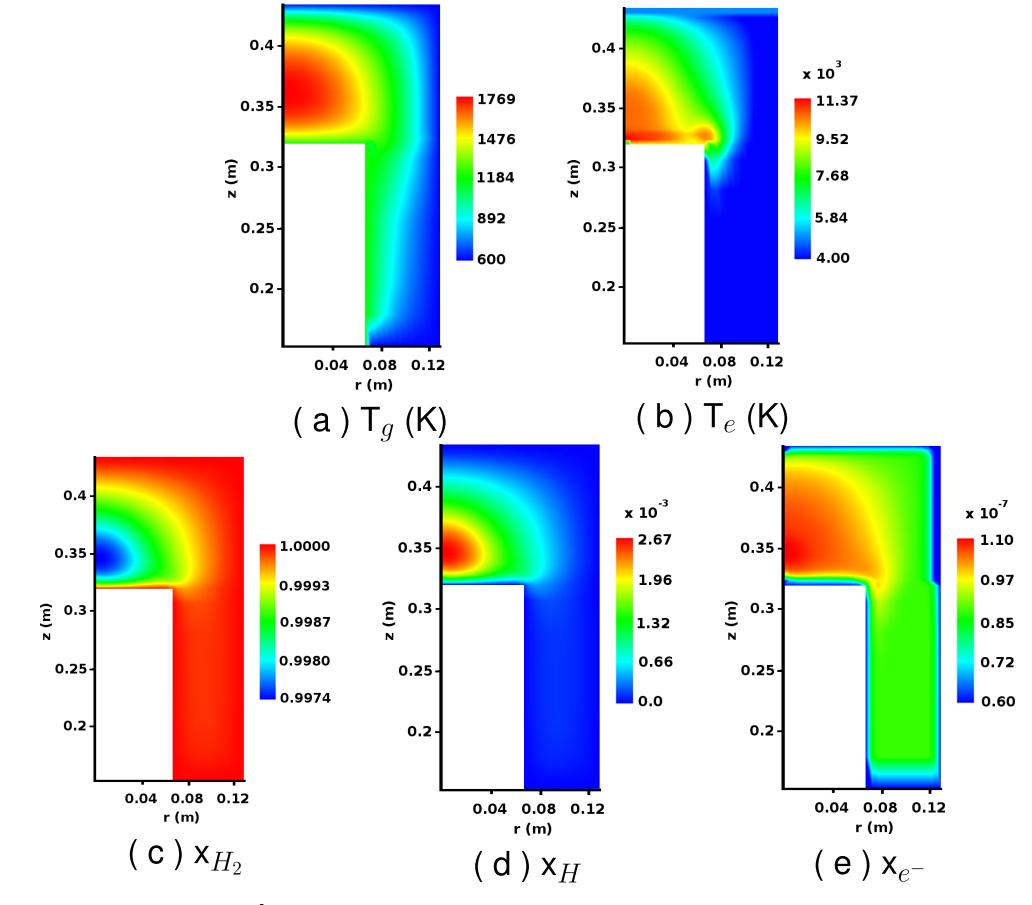



Figure 2: Solution process for (a) complete system and (b) plasma convergence.

Results


Université Paris Nord Reactor (3000 Watts, 40 Torr)

Electromagnetics

Figure 3: (a) \hat{r} and (b) \hat{z} electric field components during plasma ignition, and (c) total solution error versus iteration number.

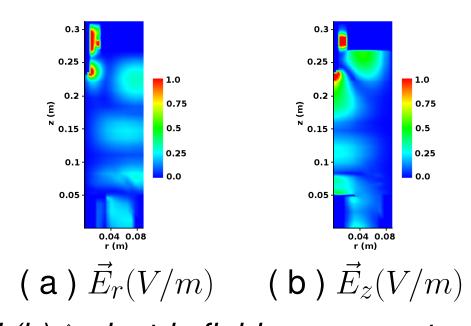

Plasma Model

Figure 4: Université Paris Nord reactor (a) gas temperature (T_g) , (b) electron temperature (T_e) , (c) electron density (n_e) , (d) H_2 molar fraction (x_{H_2}) , (e) H molar fraction (x_H) , and (f) electron molar fraction (x_{e^-}) with a total \mathcal{P} of 3000 Watts and pressure of 40 Torr.

MSU Reactor (400 Watts, 40 Torr)

Electromagnetics

Figure 5: (a) \hat{r} and (b) \hat{z} electric field components during plasma ignition.

Figure 6: MSU reactor (a) gas temperature (T_g) , (b) electron temperature (T_e) , (c) electron density (n_e) , (d) H_2 molar fraction (x_{H_2}) , (e) H molar fraction (x_H) , and (f) electron molar fraction (x_{e^-}) with a total \mathcal{P} of 400 Watts and pressure of 40 Torr.

Conclusions

- Moderate pressure, multi-physics Microwave PACVD diamond reactor simulation is under development
- Flexibility with respect to geometry observed
- Future work:
- Improve stability, efficiency
- Higher pressures (convection, time-dependent)
- Thermal processes
- * Substrate, bell jar temperature profiles
- * Internal substrate cooling* Heat capacity of samples, substrate
- Model diamond deposition process
- * Deposition rate profile
- * Update diamond sample height

References

- [1] K.W. Hemawan, T.A. Grotjohn, D.K. Reinhard, and J.Asmussen, Diam. Rel. Mater. **19**, 1446-1452 (2010).
- [2] K. Hassouni, T.A. Grotjohn, A. Gicquel, J. Appl. Phys., **86**, 134 (1999).
- [3] Stanley Shengxi Zuo, Microwave Plasma-Assisted CVD Polycrystalline Diamond Films Deposition at Higher Pressure Conditions, PhD Dissertation, 2009