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Timing & the Critical Surface
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electron beam source size (around ~20um), we are unable to resolve the ponderomotive force of the
pump pulse due to the thick light-shielding (75um) and low magnification geometry (6X).

experimentally. Magnetic fields on the order of 100
megagauss were observed travelling outward from the
interaction point of the laser with the metallic foil at S g
nearly the speed of light. These results are supported by
OSIRIS particle-in-cell simulations.
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that the ASE pulse generated a focusing - but weaker - field, corroborated by simulations (see below).
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