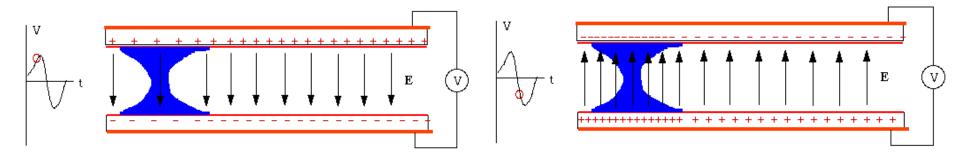
Electron Current Extraction and Interaction of RF mDBD Arrays

Jun-Chieh Wang^{a)}, Napoleon Leoni^{b)}, Henryk Birecki^{b)}, Omer Gila^{b)}, and Mark J. Kushner^{a)}

^{a)}University of Michigan, Ann Arbor, MI 48109 USA mjkush@umich.edu, junchwan@umich.edu

b)Hewlett Packard Research Labs, Palo Alto, CA 94304 USA napoleon.j.leoni@hp.com, henryk.birecki@hp.com, omer_gila@hp.com

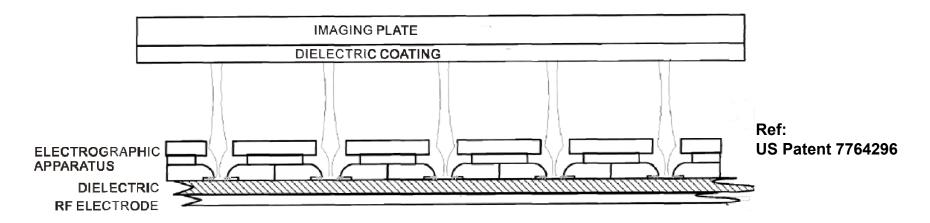
2nd ANNUAL MIPSE GRADUATE STUDENT SYMPOSIUM 21 Sept. 2011, Ann Arbor, MI


* Work supported by Hewlett Packard Research Labs

AGENDA

- Introduction to micro-Dielectric Barrier Discharges (mDBD)
- Current extraction
- Description of model
- Scaling of mDBD Arrays
 - mDBD sustained in N₂ (1 atm)
 - In Phase/Out-of-phase Excitation
 - Aperture Spacing, Dielectric Constants, Frequencies,
 Gas Mixture
- Concluding Remarks

DIELECTRIC BARRIER DISCHARGES


- The plasma in DBDs is sustained between electrodes of which one (or both) is covered by a dielectric.
- When the plasma is initiated, the underlying dielectric is electrically charged, removing voltage from the gap.
- The plasma is terminated when the gap voltage falls below the selfsustaining value and so preventing arcing.
- On the following half cycle, a more intense electron avalanche occurs due to the higher voltage across the gap from previously charged dielectric.

http://www.calvin.edu/~mwalhout/discharge.htm

MICRO-DBD ARRAYS

- Microplasmas (10s to 100s μ m) are interesting for planar current sources due to the ability of fabricating large arrays.
- Non-arcing, micro-DBDs (mDBDs) using rf voltages are attractive for arrays due to inexpensive mass or area-selective modification.

- mDBDs are being developed for electrographic surface patterning at atmospheric pressure.
- Electron beams extracted from arrays form charges (dots) at selected locations on the imaging surface to create the latent image.

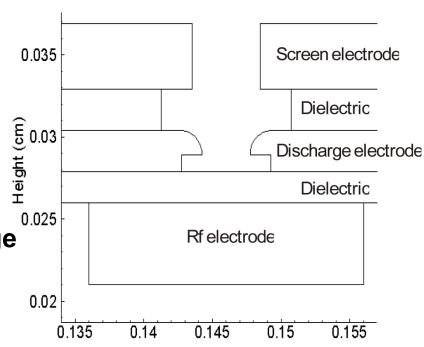
SCALING OF MICRO-DBDs ARRAYS

- At atmospheric pressure, plasma formation and decay times can be a few ns whereas the rf period is 10s to 100s ns the mDBD may need to be re-ignited with each cycle.
- Electron extraction from mDBD arrays may require a third electrode and so the electrode structure is important to the operation.
- The properties of mDBDs arrays can be optimized for producing photons, excited states or charge species by independently controlling apertures, and by choice of repetition rate, pulse shape and materials.
- We have computationally investigated the extraction of electron current from mDBDs arrays:
 - Geometry
 - Frequency
 - Dielectric materials
 - Gas composition

MODELING PLATFORM: nonPDPSIM

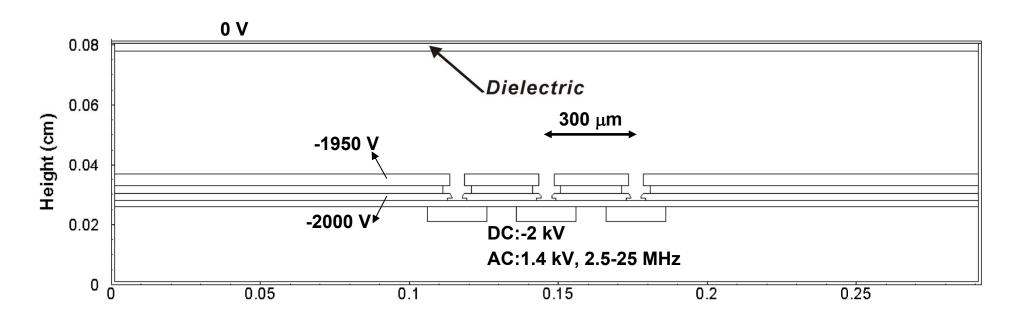
- Poisson's equation: $\nabla \cdot (\varepsilon \nabla \Phi) = -(\sum_j q_j N_j + \rho_s)$ Transport of charged and neutral species: $\partial N_j / \partial t = -\nabla \cdot \vec{\Gamma}_j + S_j$
- Surface Charge: $\partial \rho_s / \partial t = \left[\sum_j q_j \left(-\nabla \cdot \vec{\Gamma}_j + S_j\right) \nabla \cdot \left(\sigma(-\nabla \Phi)\right)\right]_{material}$
- Electron Temperature (transport coefficient obtained from **Boltzmann's equation**

$$\partial (n_e \varepsilon) / \partial t = \overline{j} \cdot \overline{E} - n_e \sum_i \Delta \varepsilon_i K_i N_i - \nabla \cdot \left(5 \overline{\phi}_e \varepsilon / 2 - \overline{\overline{\kappa}} (T_e) \cdot \nabla T_e \right)$$

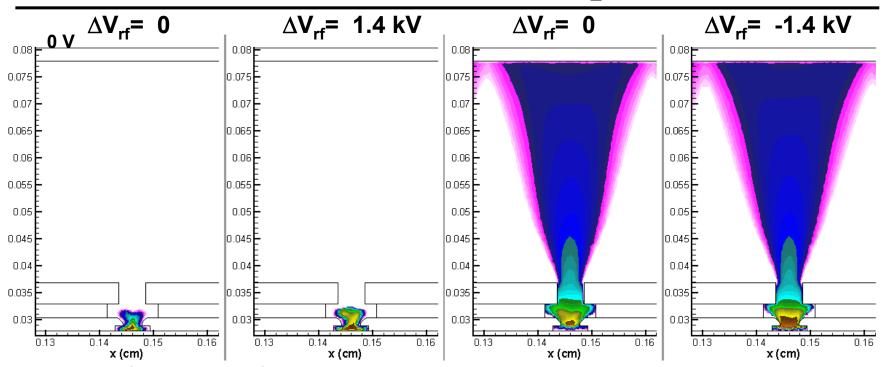

Radiation transport and photoionization:

Radiation transport and photoionization:
$$S_{m}(\vec{r}_{i}) = N_{m}(\vec{r}_{i}) \cdot \sum_{k} \sigma_{mk} A_{k} \int N_{k}(\vec{r}_{j}') G_{k}(\vec{r}_{j}', \vec{r}_{i}) d^{3}\vec{r}_{j}' \qquad G(\vec{r}_{j}', \vec{r}_{i}) = \frac{\exp\left(-\sum_{l} \int_{\vec{r}_{j}'}^{\vec{r}_{l}} \sigma_{lk} N_{l}(\vec{r}_{j}') d\vec{r}_{j}'\right)}{4\pi |\vec{r}_{j}' - \vec{r}_{i}|^{2}}$$
Electron Monte Carlo Simulation tracks shouth accolarated

 Electron Monte Carlo Simulation tracks sheath accelerated secondary electrons produced by ion and UV bombardment of surfaces.


SINGLE APERTURE: GEOMETRY

- The mDBD is a "sandwich" of alternating electrodes and dielectrics.
- rf metal electrode embedded in a printed-circuit-board.
- Negatively DC biased discharge electrode separated from rf by dielectric sheet - 35 μm opening
- Less-negatively DC biased screen electrode separated from the discharge electrode acts as an anode switch
 - Extracts charge out of cavity
 - Narrow the current beam
- Apertures are circular modeled as 2D slots to enable modeling of multiple apertures.

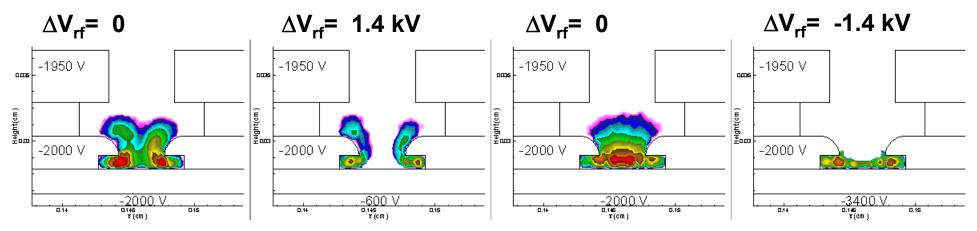


MULTIPLE APERTURES: GEOMETRY

- Grounded electrode covered with 25 μ m dielectric sheet separated from screen electrode by 410 μ m gap.
- rf: -2 kV DC, 1.4 kV AC at 2.5-25 MHz.
- Discharge: -2 kV, Screen: -1950 V, top electrode grounded

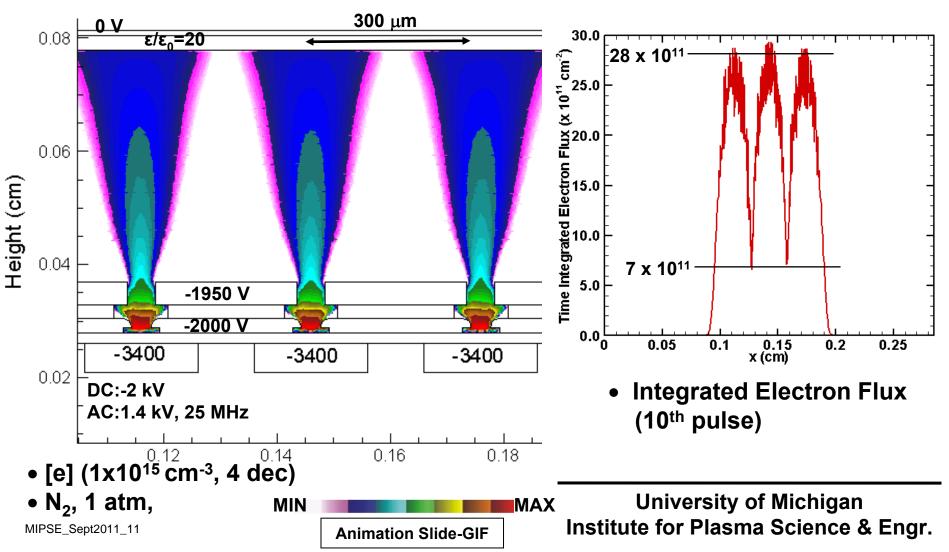
SINGLE APERTURE - 25 MHz N₂ (1 atm): [e]

- V_{rf}= -2kV DC, +1.4kV AC, 25 MHz, -2kV discharge, -1950 V screen
- ΔV_{rf} = 0 Previous positive surface charges reduce voltage drop. E-plume extinguishes, e-flux neutralizes positively charged dielectric.
- ΔV_{rf} = 1.4 kV Avalanche in mDBD cavity. Electrons charge dielectric negatively.
- ΔV_{rf} = 0 Grounded electrode extracts electrons from the cavity.
- ΔV_{rf} =- 1.4kV Positively charged dielectric reduces voltage drop. e-plume begins to diminish.

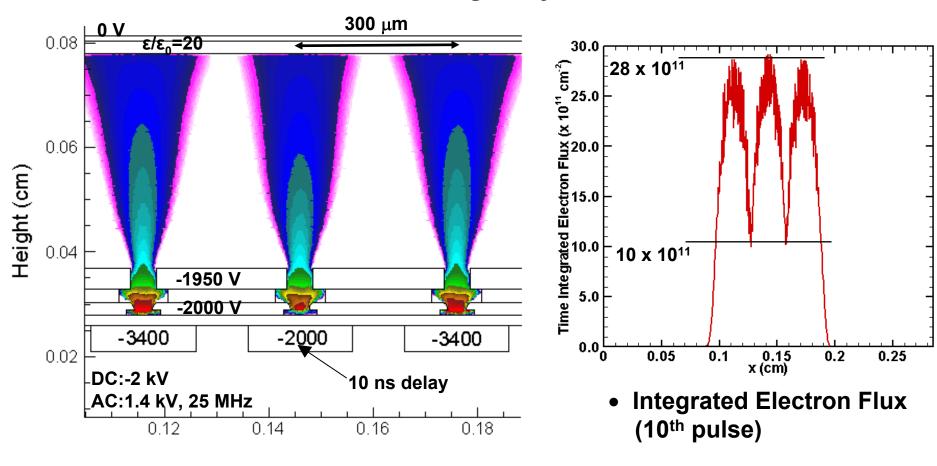

SINGLE APERTURE - 25 MHz N₂ (1 atm): [e], E/N, T_e

MIPSE_Sept2011_9

SINGLE APERTURE - 25 MHz N₂ (1 atm): S_{e+}S_{sec}


• $[S_e + S_{sec}](5x10^{24} \text{ cm}^{-3} \text{ s}^{-1},3\text{dec})$

- Larger E/N at ΔV_{rf} zero-crossing due to previously charging of dielectric. $T_{e.}$ S_{e} and S_{sec} follow E/N.
- Ionization due to secondary electrons from surface seeded by positive ions and UV photons are slightly larger than bulk ionization.
- Plasma shields electric field, lowers E/N, reduces ionization.


MULTIPLE APERTURES: IN PHASE EXCITATION

• With simultaneous extraction of electron current, the integrated flux can be uniform provided plumes are below the "space charge" limit of affecting their neighbors.

MULTIPLE APERTURES: OUT OF PHASE EXCITATION

 Delaying the center aperture by ¼ cycle increases integrated electron flux between apertures; e-plume propagates with less interference. Peak fluxes are not greatly affected.

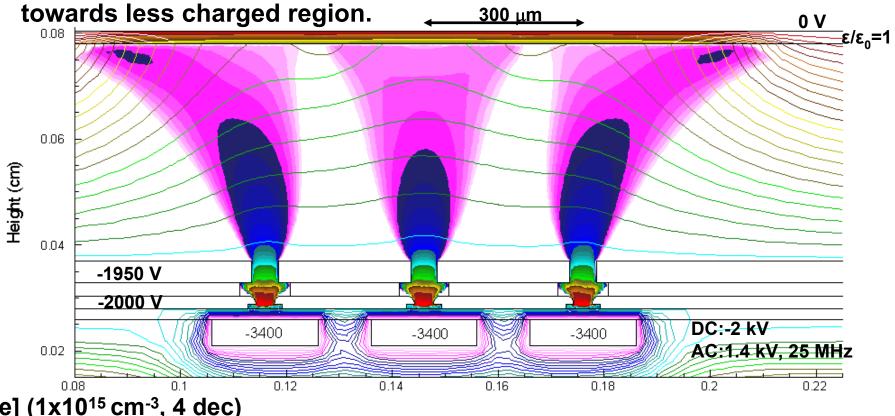
• [e] (1x10¹⁵ cm⁻³, 4 dec)

• N₂, 1 atm, MIPSE_Sept2011_12 MIN Animation Slide-GIF

MULTIPLE APERTURES: SPACING

• Decreasing the aperture spacing (300 μ m \to 110 μ m), electron plumes merge and are slightly focus in the gap due to the accumulating positive ions.

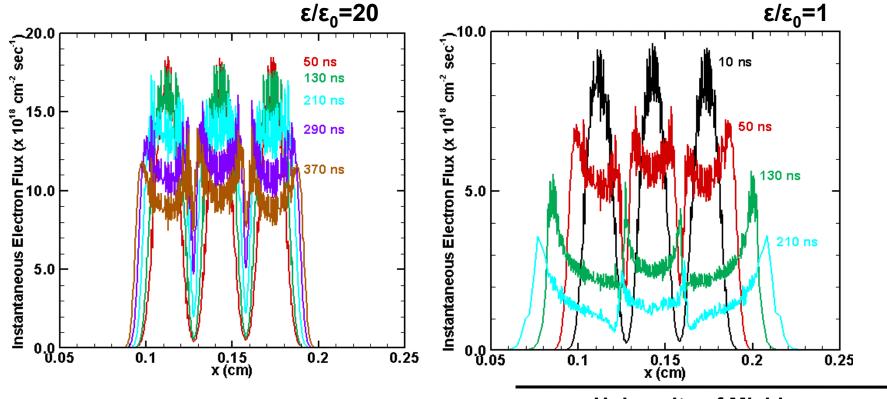
MULTIPLE APERTURES: SPACING


- By decreasing the spacing of apertures, the three e-plumes merge to form a single current beam.
- Due to the merging of three e-plumes, instantaneous electron flux is larger and broadened in width.

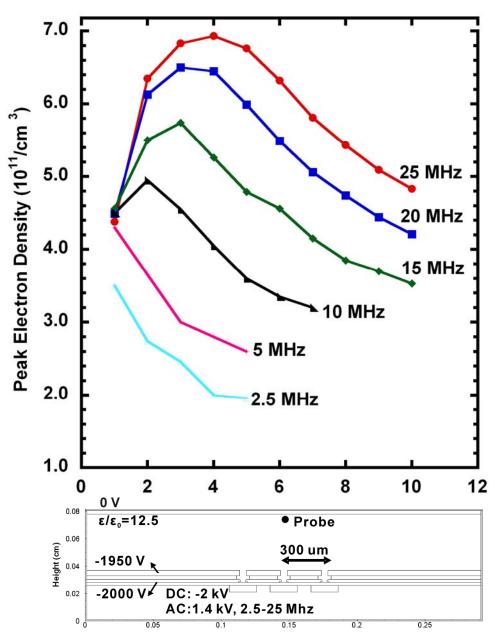
MULTIPLE APERTURES: DIELECTRIC EFFECT

• The surface charge on top dielectric creates lateral local electric fields which broaden the electron plume.

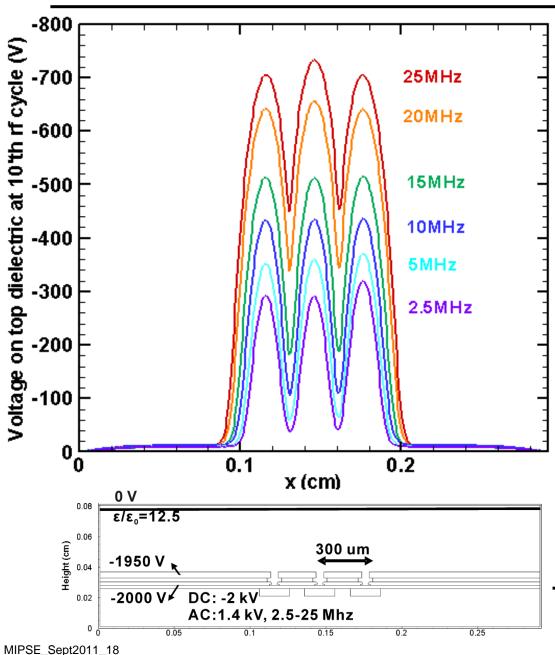
• By decreasing the dielectric constant ($\varepsilon/\varepsilon_0=20\rightarrow 1$), dielectric charging effect starts earlier. E-plume is not only broadened but directed



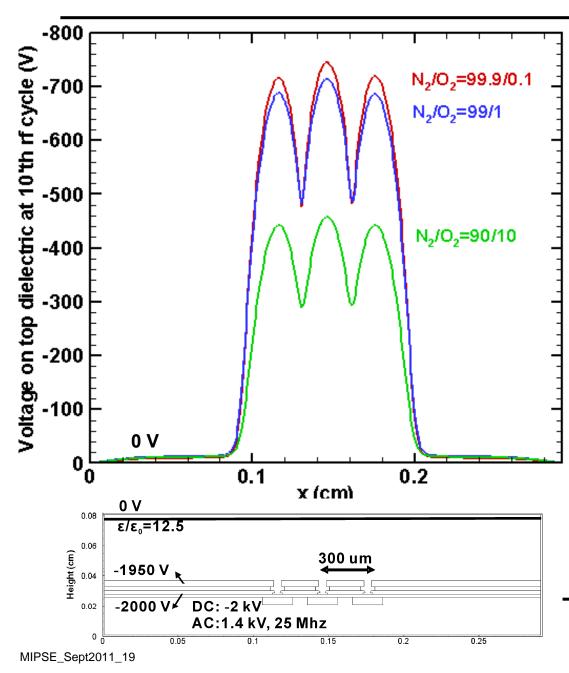
- [e] (1x10¹⁵ cm⁻³, 4 dec)
- [V] (-3.4kV~0 V)
- N₂, 1 atm, MIPSE_Sept2011_15


MULTIPLE APERTURES: DIELECTRIC EFFECT

- At high dielectric constant (ϵ/ϵ_0 =20), e-plume initially increases due to positive charge accumulation in gap, then it decreases due to negative surface charge.
- At low dielectric constant ($\varepsilon/\varepsilon_0$ =1), charging effect starts earlier due to lower capacitance. The e-flux is broadened and warped laterally towards less charged region.


University of Michigan Institute for Plasma Science & Engr.

ELECTRON DENSITY vs FREQUENCY


- A probe adjacent to dielectric sheet to measure extracted electron density.
- At high frequency, e-flux is limited by rf voltage. [e] initially increases due to accumulation of positive ions, then decreases as a result of dielectric charging.
- At low frequency, e-flux limited by charging, [e] decreases.
- [e] tends to be larger at higher frequency.

ELECTRIC POTENTIAL vs FREQUENCY

- Electric potential at surface of dielectric at 10th rf cycle for frequency of 2.5 - 25 MHz.
- At high frequency, electric potential is greater due to larger electron current extraction.
- At low frequency, e-flux limited by dielectric charging, electric potential decreases.

POTENTIAL PROFILE vs GAS COMPOSITION

- Electric potential at dielectric surface at 10th rf cycle for 1 atm N₂ with 0.1-10% O₂ at 25 MHz.
- N₂ does not attach electrons, electron attachment in gas mixture are due to O₂.
- At high O₂ content, surface potential is smaller due to negative ion accumulation (O⁻, O²⁻) in the gap.
- Massive negative ions reduces extraction field, electron current extraction and surface charges.

CONCLUDING REMARKS

- Properties of multiple mDBD apertures and electron current extraction to charge polymers were numerically investigated.
- Decreasing aperture spacing merges the e-plume and increases the flux. Electron collection on dielectric creates lateral local field that broaden the e-plume and eventually stops the current extraction.
- Decreasing the dielectric constant reduces capacitance, decreasing charging time and warps the e-plume.
- At high frequency, current extraction is limited by rf voltage; current increases initially then decreases, enabling some tuning of the collected fluxes.
- Shape of voltage and charge distribution on dielectric are limited by O₂ content due to electron attachment.