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I. Abstract 

• Measured 0-0 transition of the nitrogen second positive system in 
pulsed-nanosecond discharge (PND) 

 

• Wrote computer program that: 
– Generated corrected spectra from ICCD images based on user input 

– Simulated emissions for a given rotational temperature 

– Conducted an automatic search for the correct rotational temperature of an 
input spectrum 

 

• Measured the current and voltage characteristics for PND 
– Calculated energy transfer to plasma 

– Estimated ion-pair cost 

Figure 1 Hypersonic 
MHD energy bypass 
engine [1]. 



II. Motivation 

• Large volume, high pressure, uniform plasmas are a challenge. 

– Promising uses in materials processing, aviation, and medicine. 

 

• PNDs fulfill these requirements, but discharge mechanisms are poorly 
understood. 

 

• Measurements of rotational and gas temperatures provide important 
validation of modeling efforts and insight on the plasma chemistry. 

 

Figure 2 (left) 
Hypersonic test 
vehicle,  X-43 [2]. 
(right) PSTL 
atmospheric pressure 
plasma jet. 



III. Molecular Spectra 

• Many degrees of freedom in 
comparison to atoms 
– Electric, vibrational, rotational 

 

• Vibrational and rotational 
transitions occur in mid-infrared 

 

• Coupled to electronic transitions 
yield manifolds or bands 

 

• Band shapes reflect rotation 
energy distribution 

Figure 3 Energy level diagram of 
the nitrogen molecule as illustrated 
by Herzberg [3]. 



IV. Second Positive System 

• Transition from C3Πu -> B3Πg 

– Initial state populated from X1Σu 

 

• Assumed that rotational energy 
distribution is preserved in 
excitation 

 

• Features three branches: P, Q 
and R 

 

• Commonly used for estimation 
of neutral gas temperature [4] Figure 4 (top) ICCD image of nitrogen’s 

second positive system. (bottom) 
Collapsed version of spectra, processed 
for background. 



V. Previous Work 

• High resolution (FWHM 0.05 nm) spectroscopy of first negative 
system in nitrogen [5] 

 

• Required long acquisition times, > 30 minutes 

 

• Time-averaged rotational temperature of 900 K 

Figure 5 Previous 
measurements of 
nitrogen’s first 
negative system using 
a photomultiplier 
tube [5]. 



VI. Line Shifts 

• Term values obtained from semi-empirical formula, first suggested by 
Budó [6] and later Herzberg, 

 

 

 

• Represent spin coupling, transition from Hund’s case (a) to (b) 

 

• Updated constants obtained from Laher and Gilmore [7] 
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Figure 6 Fortrate diagram of the second positive system of nitrogen. 
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VII. Intensities 

• Intensity distribution determined from input temperature 

 

• Boltzmann distribution assumed for population of states 

 

• Honl-London factors used to scale individual branches [3] 
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Figure 7 (left) Unbroadened intensities of the 0-0 transition for the second positive 
system. (right) Spectrum broadened by a Gaussian slit function. 
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VIII. Temperature Matching 

• Program searches predefined range for a given interval 

 

• Surface error at each temperature used as measure of match similar to 
program developed by Chelouah [8] 

 

• Zero crossing of a quintic fit used to determine “correct” temperature 

Wavelength (nm) Temperature (K) 
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Figure 8 (left) Surface errors for various simulated rotational temperature 
profiles. (right) Comparison of simulated spectrum to actual spectrum. 



IX. Experimental Setup 

• Pulses of 8.6 kVpp (FWHM 5 ns) at 20 + 0.005 kHz 

 

• 21.3 – 21.5 Torr of air (equivalent to 75,000 ft above sea level) 

 

• Spex 500M monochromator with 2400 g/mm grating (300 nm 
blaze) coupled to LaVision Picostar HR ICCD 

Figure 9 (left) Image 
of the discharge in 
operation. (right) 
Test setup with ICCD, 
monochromator and 
vacuum chamber. 



X. Intra-Pulse Rotational Temperatures 

• Rise in temperature essentially a 
step function 

 

• Significant uncertainty after 25 ns, 
mostly due to decreasing signal 

 

• Temperature saturates at  
approximately 900 K 

 

• Apparent decline in rotational 
temperature after 35 ns 
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Figure 10 Best match for 
rotational temperature (gray) and a 
smoothed curve using a Hanning 
window (red). 



XI. Current and Voltage 

• Average of 1024 individual pulses 

 

• Significant ringing in transmission lines is evident 

 

• Ringing indicative of a poorly matched load for the pulser 
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Figure 11 Voltage (left) and current (right) traces of a single pulse. 



XII. Energy Transfer 

• Energy transferred to plasma equal to time integral of the current and 
voltage multiplied 

 

• Estimated energy transferred per pulse: 0.6 mJ 
– Low amount compared to pulser specifications: 5 – 10 mJ 

 

• Previous measurements of electron density, 2 x 1011 cm-3 

– Ion-pair energy cost of 305 eV 

– Ionization energy of air approximately 34 eV 
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) Figure 12 Particle-in-cell 
simulation of PND in 
nitrogen showing large 
collisionality. 



XIII. Conclusions 

• Verified previous rotational temperature measurements 

 

• Almost immediate rise in rotational temperature 

 

• Measured relatively large energy cost per ion-pair (lower 
efficiency) 

 

• Created flexible framework for interpretation of rotational spectra 



XIV. Future Work 

• Improve calibration of spectroscopy system 

 

• Optimize collection optics for spatially resolved measurements 

 

• Adjust monochromator for vibrational spectra 

 

• Expand framework for vibrational temperature matching 

 

• Estimate energy transferred to ro-vibrational states in PNDs 

 

• Determine conditions for most efficient ion-pair production 
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