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Abstract

The new Weighted Essentially Non-Oscillatory (WENO) Adaptive
Mesh Refinement (AMR) algorithm [2] is used to simulate the ideal
magnetohydrodynamic (MHD) Equations. The magnetic poten-
tial advection constrained transport method (MPACT) [1] is used
to satisfy the divergence-free constraint of magnetic field. 1D
benchmark problem Brio-Wu shock tube is presented in the AMR
framework. We expect our algorithm is robust, essentially non-
oscillatory and suitable for resolving solution structures

1. Ideal MHD Equations

The ideal MHD Equations, in conservation form, can be written as
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Assumption:

1. Single-fluid model of a plasma

2. Quasi-neutrality

3. Slow characteristic velocity of the phenomenon

4. Long time scale compared to electron and ion cyclotron periods

5. Perfect conductor due to little resisitivity

Applications:
Astrophysical jets, Solar tachocline, etc.

2. Seven-Waves and Eight-Waves Eigensystem

Solving 1D ideal MHD Equations
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by WENO reconstruction needs the eigenvaules and eigenvectors
in the conservative variable space.
The seven-wave system has the well-ordered eigienvaules:

λ1,7 = u1 ∓ cf , λ2,6 = u1 ∓ ca, λ3,5 = u1 ∓ cs, λ4 = u1,

where
U = (ρ, ρu1, ρu2, ρu3, E , B2, B3)
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The eight-wave system considered all the eight-components to-
gether, inserting one more eigenvaule,

λ5 = u1

In our work, both eigensystems are implemented. In 1D case,
there is almost no difference in solutions. Thus, in the following
discussion, only the solution of eight-wave solver is presented.
However, it has been observed that there will be significant dif-
ference in high dimension cases.

3. 1D Brio Wu Shock Tube

1D Riemann problem with the initial condition:

(ρ, u1, u2, u3, B1, B2, B3, p) =

{
(0.125,0,0,0,0.75,−1.0,0,0.1), 0<x<1

(1.0,0,0,0,0.75,1.0,0,1.0), −1<x≤0
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Some remarks:

1. The AMR solution is solved by AMR-WENO with local Lax-
Friedrichs flux splitting used.

2. U-L1 denotes the solution of uniform mesh of the same step
size as Level 1 mesh. U-L2 has a similar meaning. The refer-
ence solution is solved on a fine mesh.

3. The AMR solution matches very well with U-L2.

4. The solutions of finer step sizes show fewer small oscillations.
This illustrates the efficiency of WENO in this problem.

4. High Dimension Cases and MPACT

The divergence-free constraint has to been treated specifically in
high dimension case. In our work, MPACT [1] is used to achieve
an essentially non-oscillatory and divergence-free B field.
The vector potential of B field are evolved by

At + (∇×A)× u = −∇ψ,

In 2D case, only the 3rd components of A is needed
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while in 3D case, the weakly hyperbolic system has to be solvedA1
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5. Future Directions

1. Implement 2D/3D Benchmark problems such as Orszag-Tang
vortex and Cloud-shock interaction

2. Compare the solutions with those solved by Finite Volume
method in [1]
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