Phase Contrast Imaging with Betatron Radiation from Laser
Wakefield Accelerated Electrons
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Pure phase contrast imaging using Betatron radiation
was observed with two injection mechanisms. A high
efficiency direct detector showed clear phase contrast,
while a low efficiency indirect detector showed imaging
with high energy radiation. These results provided a

the high intensity region of the laser pulse, which - .. . .. Counts (A.U.) - L. - .. Counts (A.U.) basis for future experiments to map biological specimen.
are at an ideal location to be injected into the lonization Injection 2000 7000 12000 17000 | lonization Injection 23 280 330
. . ankarEEhgae 0 Y - g t PR
wakefield behind the laser pulse [5]. | - R T
|| || R N Back e ] References

Required N Gas Jet Density of Nf',\el;;” g Target Size: e 2 [1] T. Tajima & J.M. Dawson Phys. Rev. Lett. 43 (1979).
Intensity to N°* = Electrons N 3 3mm x 2mm e 3 [2] V. Malka et al. Nature Physics 4 (2008).
lonize ; bornfrom: e | 0 g X.15mm & 600 - [3] S.W. Wilkins et al. Nature 385 (1996)

He NS [ i = 0] - Layer Thickness: e e - T ' '

—'"«E Ly 00 - 5 um L e [4] UCL Radiation Physics Group: medphys.ucl.ac.uk (2005).
[5] C. Mcgﬁffey et al. *Scintillator-based Image>s”\7/;/7ere post-processed to reduce noise [5] C. McGuffey et al. Phys. Rev. Lett. 104 (2010)

This work is supported by NSF CAREER Grant No: #1054104 and Darpa AXiS Grant No: # N66001-11-1-4208



