MICHIGAN STATE

UMNIVYVERSITY

Abstract

Monte Carlo particle collision calculations can be very
computationally expensive for particle-in-cell codes. In
the case of background fluid collisional calculations, where
each particle calculation is totally independent of other
collisions, the calculations can be setup as highly paral-
lel. Porting to GPU platforms has shown two orders of
magnitude decrease compared to single processor perfor-
mance.

One approach is to simply apply a function to ev-
ery particle which involves computing the particle energy,
a square root to obtain the speed, and either interpola-
tion of tabled cross sections or computation of a curve
fit for each process for every particle |[1]. Then, based
on this probability of collision the collisional dynamics
code might be executed. For collisional probabilities « 1
this is inefficient for finding particles to collide and load
imbalanced for the collisional dynamics on the vector ar-
chitecture (Single-Instruction Multiple-Data SIMD) like
capabilities available on the GPUJ2|.

The alternative approach is to use the null collision
method|1] where particles selected for collision are se-
lected at random using the total collision probability,
which is independent of particle energy and position.
However, this sparse random access of particles in the par-
ticle array, as needed for the null collision method|1], has
drawbacks on the GPU due to SIMD architecture. GPU
threads that are grouped in hardware are called warps.
FEach warp can only issue one computational or memory
instruction. However, when two memory instructions are
located with 128 bytes|2| of each other they can be ’coa-
lesced’ into one instruction.

Using the data structure and algorithm presented in
|3| for efficient particle to grid charge accumulation on the
GPU, which ensures that all particles contained within a
cell are contiguous in memory, this poster examines the
effect of selecting particles for colliding that are contigu-
ous In that same list. This setup would capitalize on the
null collision method’s not needing to calculate the en-
ergy of each particle and optimize the memory bandwidth

through the GPU.

Overall Scheme

This work represents an effort to maintain an effi-
cient data structure for two components of the PIC
scheme

Cell charge accumulation Memory contention
for cell edge charge
Null Collision Random access pattern causing

high memory latency

A method to increase effective memory bandwidth to
these algorithm components is to ensure that parti-
cles used are contiguous in memory

Increasing Efficiency of Monte Carlo Particle-Fluid Collision Calculations

on GPU

Charles Bardel, John Verboncoeur
Electrical and Computer Engineering, Michigan State University

Charge Accumulation

Charge accumulation on mesh nodes from particles
is one of the most memory-bandwidth limited pro-
cedures of PIC.

The procedure described in the paper [3| lays out a
scheme to keep the the read/write operations low by
keeping a running sum of charge from each cell called
particle pull. Here k is the number of mesh vertices
and £ < N and d is dimensions of the domain.

Particle Push Particles ‘push’ on to the grid loca-
tion requiring O((2% 4+ 1)N) read/writes.

Particle Pull Particles are ‘pulled’ by the grid lo-
cation requiring O(QdN + k) read /writes.

This data structure provides particles in a cell to be
contiguous in memory allowing for a running sum
for each mesh node with reduced write conflict

Bucket-Sort Defragmentatio

e ‘Particle Pull’ is memory bandwidth efficient
since it requires fewer writes and exclusive ac-
cess to mesh nodes

e Since this optimization only requires cell par-
ticles to be contiguous a form of ‘bucket’ sort
is used

e In the following figure, each cell is sorted into 3
groups of particles: going left(-), staying (=),
going right (+).

e 2N reads and 4p writes are needed to maintain
this data structure, where p is particles leaving
the cell

M e P,y Py

====+E‘EE.....

! i
hn)i':: l h‘ﬂi.r‘r;r!

™ P2 Pa, Pra+1

===+GEEEEE+.IU

i4-1 i=+1
brn’.r'.r.'. l bmu:r

====+996=‘== .'...999995+..I

| A |

i i i+1 i+1
[Ijmrr? b'.lrrm.r hmin b

JJJJJJJJ

e

This method can be adapted to multi-cell crossing
scenarios such as particle insert, 2D and 3D space-
filling curves. The following diagram shows a hier-
archy of bucket sorts that can handle multiple cell
crossings following an arbitrary space-filling curve.

Null Collision Method

The Null Collision method significantly reduces the
memory-bandwidth requirements at each step since
only a fraction of the particles are selected to have
collisions independent of the actual particle energy.
This is accomplished by observing the max colli-
sional frequency:

Vmaz = mf?x(ng(x)) mgx(afp(éa)v)

where n,(x) is a spacial varying target density and
or (&) is the total cross section, v is speed.

Coalesced Memory Access

Memory-bandwidth efficiency is determined by how
well the random memory requests are aligned to
memory locations. First shown is memory being re-
quested with 100% utilization, in one memory trans-
action. The second shows a memory access misalign-
ment causing 50% utilization of memory requested,
requiring two memory transactions. Since the target
access pattern is random, cache access will not help,
so the most eflicient access pattern is required.

Simulation

To explore the usage of this technique the following
experimental simulation was performed: three drift
tubes are setup where 1,600, 16,000, and 160,000
electrons are bounded in the X dimension by elas-
tic boundary conditions and an electric field is ap-
plied in the Z dimension. An electrostatic periodic
field solve is applied for the simulation but it has
no significant contribution compared to the applied
field. Ionization and particle insertion occurs when
the particles have a collision at a high enough energy.

References

|1] J. P. Verboncoeur, PLASMA PHYSICS AND CON-
TROLLED FUSION 47, A231 (2005).

|2] Nvidia, Cuda c best practices guide, 2012.
3] N. G. George Stantchev, William Dorland, Parallel Dis-
trib. Comput. 68, 1339 (2008).

V) | () L R c

Particles in Memory

The layout of particles in memory is key to achieve
high memory throughput on either CPU or GPU.
The algorithm described achieves this balance with
the following memory layout

Particle Position in Memo ry
T T T

As shown this method keeps particles belonging to a
cell contiguous and randomly represented in a cell.

Simulation Effects

e Does not exhibit non-uniform particle growth
in simulation

e Variance in cell mean can be large unless num-
ber of cells are less than the number of cluster
groups

Minimum Cluster Groups = 100, N = 160000
I I I I I

=
th

— Cluster size 1
e Cluster size 8
———-Cluster size 32

I
T

Variance of Cell Thermal Energy
=] (95]
- th N w w w
T T T T

e
th

0l \ \ | | | | \ \ |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Step

Conclusion

This method achieves the stated goal of both keep-
ing particles within a cell contiguous and uniformly
representing the cell. Presented are 3 scenarios with
different number of cluster groups. The scenario that
has more cluster groups than cells shows agreement
with non-grouped method.

