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Motivations 

–  Random circuit errors affect TWT performance, 
manufacturing yield, and cost.  This problem is increasingly 
serious at millimeter and sub-millimeter wavelengths 

–  The phase velocity of the circuit will be altered due to the 
random manufacturing errors 

–  Seek to derive scaling laws for the ensemble-averaged gain 
and phase for TWT with random axial variations in circuit 
parameters 

–  To extend existing work into regimes with non-synchronous 
beam velocities and to include the effects of the Pierce “space-
charge” term 
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Previous Works 
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Note: In significant number of cases the gain is actually higher (!) than the error-free case.  

“Error-free” 
gain is 647.2 
(28.1 dB) 

µ = 585.6 (27.7 dB) 
σ = 94.0 

Power distribution at x = 100 for b0 = d = 0, C = 0.05  
σb = 1.7  

[1] Pengvanich, Chernin, Lau, Luginsland, Gilgenbach, IEEE Trans. Electron 
Devices, vol. 55, no. 3, pp. 916-924 (2008) 3 



Previous Works (cont’d) 

 The variations in gain and phase appear quadratic in σb 
(b = Pierce’s detune parameter) 

Variations at x = 100 for b0 = d = 0, C = 0.05  

[1] Pengvanich, Chernin, Lau, Luginsland, Gilgenbach, IEEE Trans. Electron 
Devices, vol. 55, no. 3, pp. 916-924 (2008) 4 



Pierce Theory 

Assuming               dependence  
s  = electron displacement 
ε   = axial circuit field 
ω = signal frequency 
vp = cold-circuit phase velocity 
vb = DC beam velocity 
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Force Law (2 beam modes) 

Circuit Law (2 circuit modes) 

C3∝ Ib is the Pierce gain parameter 

e jωt− jkzz



Pierce Theory of Error Free Tube 

Neglecting the backward wave gives the Pierce 
dispersion relation for three waves with              
dependence 
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δ 2 + 4QC( ) δ + jb+ d( ) = − j

e jωt− jβz

where  
δ = is like kz (spatial exponentiation rate) 

            is the Pierce velocity parameter 

d is the dimensionless Pierce loss parameter 
4QC is the beam space charge effects 
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•  When b, C, or d are allowed to vary axially, the Pierce 
dispersion relation is no longer valid 

•  Governing third-order differential equation in x = ωz/vb  by 
combining force law and circuit equation 

 where f(x) = e jxs(x) is Pierce’s 3-wave solution 
•  Random variations can be introduced into the parameters b, C, 

or d  
–  Previous work has shown that variations in b produce greatest effect on 

the output 
–  This work will concentrate only on random variations in b(x) 

d3 f (x)
dx3

+ jC b− jd( ) d
2 f (x)
dx2

+ 4QC3 df (x)
dx

+ jC 4QC3 b− jd( )+C2( ) f (x) = 0
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Continuum Model of TWT 



Random Circuit Fabrication Errors 
•  Assume velocity mismatch, b, with a random error 

represented by q(x). 

L
x 0

b0 

input, e jωt output, e jωt + G + jθ 

b = b0 1+ q(x)[ ]; q is a random function of x 
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Numeric Approach 

•  Numerical Analysis. Solve 

    5000 times 
–  Each with a different random b(x) profile 
–  Assuming no losses, i.e. d = 0 
–  Initial conditions:  

•  Calculate the mean and standard deviation for the gain and 
phase 

9 

d3 f (x)
dx3

+ jCb(x) d
2 f (x)
dx2

+ 4QC3 df (x)
dx

+ jC 4QC3b(x)+C2( ) f (x) = 0

f (0) = 0, !f (0) = 0, !!f (0) =1

[2] S. Sengele, M. L. Barsanti, T. A. Hargrave, C. M. Armstrong, J. H. Booske, and Y. Y. 
Lau, J. Appl. Phys., vol. 113, 074905 (2013). 

Effects of QC was also numerically analyzed recently by 
Professor John Booske’s group [2] 



Analytic Approaches 

•  Perturbative analysis. Linear theory carried to second order in 
b(x), for all three waves 

 
 P(x,s) depends only on error-free, 3-wave solution. 

G1(x)+ jθ1(x) = −
1
2
σ b
2Δ ds

0

x

∫ P(x,s)
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•  Riccati analysis*. Nonlinear formulation of wavenumber, for a 
single wave 
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where λ is a complex constant that depends on the velocity 
mismatch parameter, b0. 
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* This work done in collaboration with Tom Antonsen of the 
University of Maryland, College Park MD 



•  Perturbation analysis shows good agreement with numerical solution 
for gain over a wide range of parameters. 

•  Perturbation analysis yields phase variation close to zero, similar to the 
Riccati analysis. Numerical solutions also show small variations in 
phase.  
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Results: Synchronous Circuit Velocity 
x = 100, C = 0.05, Δ = 1, QC = 0, b0 = 0 



•  All three methods are in agreement for non-synchronous beam 
velocities 

•  Perturbation analysis more accurate than Riccati analysis as expected 
due to Riccati analysis only considering a single wave  
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Results: Nonsynchronous Circuit Velocity 
x = 100, C = 0.05, Δ = 1, QC = 0, b0 = ±1 



Results: Synchronous Circuit Velocity, QC ≠ 0 

QC = 0.15 

QC = 0.35 
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x = 100, C = 0.05, Δ = 1, b0 = 0 

•  It is possible that nonzero QC enlarges the range of b in which the 
amplifying wave would have reduced or zero gain.   

•  In this case all three waves have comparable amplitudes 
•  This violates the basic assumption behind the Riccati approach 



Standard Deviation Analysis Extension 

Note: Standard deviation is first order in σb, 
much larger than deviation from the mean, 

which is second order in σb. 
 

•  SGb, Sθb are relatively simple functions of x 
•  Analysis extended from that of [1] to include the Pierce space charge term, 

4QC. 
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σGb = SGbσ b , σθb = Sθbσ b

[1] Pengvanich, Chernin, Lau, Luginsland, Gilgenbach, IEEE Trans. Electron Devices, 
vol. 55, no. 3, pp. 916-924 (2008) 
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QC = 0 

QC = 0.35 

Standard Deviation Results: Synchronous 
x = 100, C = 0.05, Δ = 1, b0 = 0 

•  Standard deviation larger than the mean variation leads to significant 
fraction of samples with gain higher than the error-free case 
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x = 240, C = 0.0197, Δ = 4, b0 = 0.36, QC = d = 0 

Three Wave: G-Band TWT Example 

Vb = 11.7 kV, Ib = 120 mA, L = 1.17 cm, circuit pitch = 0.02 cm 

[3] Chernin, Rittersdorf, Lau, Antonsen, and Levush, IEEE Trans. Electron Devices, vol. 
59, 1542 (2012). 

 



Four-Wave Analysis3 

•  Circuit equation must be modified to contain 
the backward wave 

•  Again, focus on random variations in b 
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[3] Chernin, Rittersdorf, Lau, Antonsen, and Levush, IEEE Trans. Electron Devices, vol. 
59, 1542 (2012). 
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Four-Wave Results 

Figure 8: Departures from the error-free values of small-
signal gain and the standard deviations of those departures 
versus σb. Solid lines indicate results including reflections 
(4th model), whereas dashed lines indicate results omitting 
reflections (3rd model). C = 0.05, b = 0, xN = 100, and N = 
100. 

[3] Chernin, Rittersdorf, Lau, Antonsen, and Levush, IEEE Trans. Electron Devices, vol. 
59, 1542 (2012). 

 

Figure 9: Departures from the error free values of small 
signal phase and the standard deviations of those 
departures vs. σb. Solid lines indicate results including 
reflections (4th order model); dashed lines indicate 
results omitting reflections (3rd order model). C = 0.05, 
b = 0, xN = 100, N = 100.  
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Fig. 5. Small-signal gain and output phase versus the Pierce b parameter, for
a uniform circuit. C = 0.05, xN = 100.

Fig. 6. Differences between small-signal gain and output phase in the pres-
ence of a single discontinuity and those in the absence of the discontinuity
versus the value of the Pierce b parameter in the second half (50 < x < 100)
of the interaction space. b = 0 in the first half (0 < x < 50). C = 0.05,
xN = 100.

means that the growing mode does not yet completely dominate
the other two forward waves at x = 100.

First, we consider the effect of a single discontinuity (joint)
at x = 50. We assume that the beam is in perfect synchronism
with the circuit wave in the first half (0 ≤ x ≤ 50) of the
interaction, i.e., b(1) = 0. The resulting differences in gain
and output phase between the circuit with and without the
discontinuity as functions of b(2) are plotted in Fig. 6. We note
that, for most of the range of b(2) in Fig. 6, the gain in the
presence of the discontinuity is larger than in its absence. We
attribute this phenomenon to the constructive interference of the
nongrowing waves, the amplitudes of which are changed along
with that of the growing wave at the joint according to (13).

Fig. 7 is a plot of the backward-wave power at x = 0 due
to reflection at the single joint at x = 50. We see that the

Fig. 7. Backward-wave power at x = 0, normalized to the input power, due
to reflections at a single joint at x = 50 as a function of b in the second half
(50 < x < 100) of the interaction space. b = 0 in the first half (0 < x < 50).
C = 0.05, xN = 100.

Fig. 8. Departures from the error-free values of small-signal gain and the
standard deviations of those departures versus σb. Solid lines indicate results
including reflections (fourth-order model), whereas dashed lines indicate results
omitting reflections (third-order model). C = 0.05, b = 0, xN = 100, and
N = 100. The error-free values of gain are 27.8 and 28.1 dB with and without
reflections, respectively.

backward-wave power is small compared with the injected
power in this case, because the amplitude of the forward wave
that is incident on and backscattered from the discontinuity has
not yet grown very large. However, we may expect that in the
presence of discontinuities located toward the high-power end
of the interaction space, the amount of backward-wave power
that makes it back to the input can become significant, as shown
in the following example.

We proceed to consider a case from [1], for which N = 100
and the values of b(i) are sampled from a Gaussian distribution
with specified mean b and standard deviation σb. We compute
the ensemble average values of the gain and phase over 500 sets
of random values of b(i). Figs. 8 and 9 show the average gain
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Fig. 12. Values of Pierce parameters b and C corresponding to the data in
Table I and Fig. 11.

Fig. 13. Small-signal gain versus frequency for different values of standard
deviation of the circuit pitch distribution.

standard deviation. We assume that the Pierce impedance does
not depend on the circuit pitch.

Fig. 13 is a plot of the small-signal gain versus frequency
for different levels of random error. The legend label values
are the standard deviation of the pitch divided by the average
pitch. We see that the size and sharpness of the gain ripples
quickly grow as the level of errors is increased. With 1% error,
the amount of gain ripple is well under 1 dB, but with 3% error,
the ripple increases to more than 2dB. Finally, for 5% error, the
gain ripple is very large, and regenerative oscillation becomes
a possibility. The higher the gain, the larger we expect the gain
ripple to become for a specified level of random errors in the
pitch.

The period of the gain ripple varies from about 1.3 GHz to
3.1 GHz, corresponding to reflections between different parts
of the circuit. This variation is also due to the variation in group
velocity with frequency in the folded waveguide circuit.

Fig. 14. Effect of attenuation on small-signal gain in the presence of 3%
random pitch errors.

Fig. 15. Small-signal gain versus frequency for equally spaced and randomly
spaced joints in the presence of 3% random pitch errors.

If attenuation is introduced in the circuit,6 the gain is re-
duced and so are the amplitudes of the gain ripples for a
fixed level of error. An example is shown in Fig. 14 for the
case of 3% error. The effect is not large in this short circuit
(< 1.2 cm).

Our final example illustrates what happens if the sections are
not all of the same length, as we have been assuming. Fig. 15
shows an example for 100 sections in which the locations of
the 99 section boundaries (“joints”) were chosen by sampling
a uniform random distribution in (0,1). In this example, the
amplitudes of the gain ripple are reduced compared to those
found when the sections were of the same length. We expect,
but have not proven, that this is a general result.

6This may be done for both the forward and backward waves by replacing
β2

p → β2
p(1 − 2jCd) on the left side of (2), where d is the Pierce attenuation

parameter. The power attenuation of the cold circuit (in decibels per unit length)
is then ≈ 8.686βpCd.

Four-Wave: G-Band TWT Example 

Figure 13: Small signal gain vs. frequency for different 
values of standard deviation of the circuit pitch 
distribution.  

[3] Chernin, Rittersdorf, Lau, Antonsen, and Levush, IEEE Trans. Electron Devices, vol. 
59, 1542 (2012). 

 

Figure 15: Small-signal gain versus frequency for 
equally spaced and randomly spaced joints in the 
presence of 3% random pitch errors. 
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Vb = 11.7 kV, Ib = 120 mA, L = 1.17 cm, circuit pitch = 0.02 cm 



Summary 
•  Mean deviation in small signal gain and phase is found to be 

quadratic in σb. It is a higher order effect than the standard 
deviations, statistically resulting in higher gain in a significant 
number of simulated TWT’s.  

•  Good agreement is found between analytic theory (perturbative or 
Riccati) and numerical computation in the absence of space charge 
effects (QC = 0).  Agreement was poor for nonzero QC. 

•  Study of the reverse propagating wave (four-wave theory) shows 
that its effects on gain and phase are significant 

•  Effects of small pitch errors in a G-Band TWT were evaluated as an 
example. 

•  Remaining problems:   
Can TWT oscillations be caused by reflected waves from random errors? 
What is the true nature of the higher gain with random errors?  QC effects?  
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