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Introduction

• Electron induced SEE in insulator walls can drastically affect the energy distribution of 

the electrons, sheath potential, cross-field current, heat flux, and various other 

properties of the system [1, 2]

• The exact effects of SEE in Hall thrusters have not been well studied experimentally    

• These effects can be experimentally studied by inducing SEE in insulator materials 

used in Hall thruster channels in a low-density background plasma using a low-

energy electron gun 
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Figure: Sheath profile in absence 

and presence of secondary 

electron emission 

Figure: Plasma 

material interaction 

science
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Motivation

• Analytical models using kinetic theory to study plasma-wall systems suggest 

the decrease in sheath potential, highly anisotropic, non-Maxwellian

distribution of electrons with a severe depletion of high energy electrons, 

and increased heat and energy fluxes to the wall [3,4]

• To study the effects of SEE in Hall thrusters, ionization, strong electric and 

magnetic fields, and the resulting cross-field current, must be added to the 

simple plasma-wall system

• Simulations and experiments of the effects of SEE in Hall thrusters suggest 

the increased contribution of near-wall conductivity of the insulator wall to 

the E x B current of Hall thrusters, formation of two-stream instability due to 

beam-like character of the secondary electrons, and sheath instability [5, 6]

• Many of the models and simulations have little or very indirect experimental 

verification; therefore, experimentally studying the effects of SEE in a Hall 

thruster-like system is essential in verifying the results of the previous 

studies
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Hall Thruster
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Figure: Photograph of the 

NASA 173 Mv1

Source: Plasmadynamics and 

Electric Propulsion Website 

(http://pepl.engin.umich.edu/th

rusters/NASA_173Mv1.html)

Figure: Photograph of a the 

NASA 173 Mv1 operating at 

300 V, 15 A.

Source: Plasmadynamics and 

Electric Propulsion Website 

(http://pepl.engin.umich.edu/thr

usters/NASA_173Mv1.html)

Figure: Schematic of a Hall thruster

Source: Laboratoire plasma et conversion 

d’energie Website (http://www.laplace.univ-

tlse.fr/groupes-de-recherche/groupe-de-

recherche-energetique/projets-en-

cours/Propulseurs-a-effet-Hall-pour/Hall-

effect-thrusters-for?lang=fr)
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Complexity in Hall Thrusters
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Figure: Rotating Spoke 

Instability (15 – 35 kHz) in ExB

direction.

Source: IEPC-2011-173

Authors: Ellison, Raitses and 

Fisch

Figure: I-V Characteristics for BN and Carbon 

Velvet showing clear difference due to SEE

Source: IEEE Trans on Plasma Sci., 39, 4, 

2011

Authors: Raitses et al.

Figure: Radial Profile of 

Oscillating Plasma Waves in a 

Hall Thruster

Source: PEPL Website

Author: Robert Lobbia

Figure: Reduction in thickness 

of wall over time due to wall 

erosion

Source: NGPD Website

Author: Yim J. T et al.
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Known Effects of SEE 

in Hall Thrusters

• SEE at channel walls regulates energy transport to the wall by controlling 

sheath potential profile

– Leads to depletion of the tail of the EEDF

– Saturation of the electron temperature

– Sputtering of wall material

• SEE emission under certain conditions lead to relaxation oscillations which 

ultimately affects engine stability as well as possibly cross field diffusion 

rates
– Can feed instabilities via two-stream interaction

• SEE controls the electrically insulating properties of Hall thruster channel 

(determines how large of an electric field that can be supported in the 

channel)

– Emission affects near-wall conductivity

• SEE electron beam can heat plasma electrons (effect may be enhanced by 

SEE trapped between channel walls)

6
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Research Benefits

• The experimental apparatus designed for this effort simulates the channel of 

a Hall thruster

• Isolation of the physics allows investigation of specific effects relevant to Hall 

discharge physics

• Results serve as a tool to validate and improve existing numerical models by 

providing boundary conditions and secondary electron emission yields for 

situations encountered in Hall thrusters

• This will allow to choose better materials for future Hall Thrusters and 

conditions to improve the performance and potentially the power density and 

life of these thrusters.

• Data gathered may also be useful in other applications such as cross field 

material processing tools, fusion devices, etc.

7



MIPSE 2013 Kapil Sawalni (sawlanik@umich.edu)

Research Goals

8

• Develop a test-bed to study the effects of secondary electron emission (SEE)
processes on EP discharge plasmas

 Characterize changes in electrostatic wall sheath due to SEE in EP relevant
situations

 Characterize changes in electron energy distribution function (EEDF) due to
SEE injection into discharge

• Understand and investigate effects of SEE on general plasma properties and
discharge characteristics

 Quantify influence of incident (primary) electron energy on SEE yield in
presence of plasma, Einc

 Quantify influence of primary electron incidence angle, θinc

 Quantify influence of magnetic field & topology on plasma-wall interactions, B0

and B

 Quantify influence of insulator temperature on plasma-wall interactions, Tinit

 Quantify influence of insulator surface roughness on plasma-wall interactions

 Quantify influence of insulator morphology (crystalline/amorphous) on plasma-
wall interactions

• Utilize knowledge gained to improve the performance and potentially the power
density and life of EP thrusters
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Research Approach
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• Bench-top apparatus built to characterize 

discharge EEDF in presence of SEE within a 

plasma environment

• Plan of action:
– Coated filament cathode initiates transverse electric 

discharge, terminating at the anode

– Low density plasma generated by filament discharge 

produces thick sheath

– Electron gun will be used to generate secondary 

electrons from the ceramic target, which will migrate to 

the plasma

– Probes will be placed to collect plasma information due 

to the secondary electron flux

• Diagnostics will provide:
– Sheath potential

– Structure of secondary electron energy distribution

• Test effects of Einc, θinc, B0, B, Tinit , and surface 

conditions on discharge properties

Figure: Concept Drawing

Figure: Diagnostics Plan
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Experimental Setup 

Drawing and Assembly
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Figure: CAD drawing of the 

experimental setup

Figure: Experimental setup

Figure: CAD drawing of the entire 

experiment inside the vacuum 

facility

Figure: Vacuum facility that 

will house the experiment
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Magnetic Field 

Characterization

• Helmholtz coil arrangement 

utilized for creating uniform 

magnetic field
– Designed to include chamber 

specifications and allow sufficient 

space for a thick sheath measurement

• Structure allows non-uniform 

magnetic topology by varying the 

separation between the two 

electromagnets and applying 

unequal currents to the coil

• Over 200 Gauss of magnetic field 

has been achieved experimentally
– Shown in the figure; simulation results 

in dashed lines, and experimental data 

by markers
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Figure: CAD drawing of the 

Helmholtz coil used in the 

bench top apparatus

Figure: Axial magnetic field generated by the Helmholtz coil based on 

input current 
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Low Energy Electron Gun

• Electron gun fabricated using stainless 

steel

– Current design accommodates 2 grid 

assemblies for beam acceleration and 

focusing

– Design permits easy expansion of grid 

assemblies depending on application

• Filament driven thermionic electron beam 

source

– Various tungsten wire sizes have been 

chosen to provide required extracted 

current with minimum input power

– Other refractory materials are being 

investigated

– Filament has a carbonate coating with a 

mixture of Barium, Strontium and Calcium 

[(Ba-Sr-Ca) CO3 56-31-13%]

– Coil geometry used to enhance emission

12
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Electron Gun Specs

• 1% Thoriated Tungsten wire used

• Stable current demonstrated = 1 mA

• Max. current demonstrated = 4 mA (short duration)

• Filament wire diameter = 0.01 inch = 0.2794 mm

• Low frequency pulsed mode also demonstrated

• Minor focusing effects demonstrated using grids 

bias voltage
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Figure: Typical reduction in 

collected current as a 

function of magnetic field.

* For plasma density of 

interests, the current density on 

the target or probe is much 

smaller than the primary beam 

emitted by the electron gun.
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Discharge Preliminary

Characterization
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• Cross field plasma generated with densities varying 

from 107 cm-3 to 109 cm-3

– Sheath thickness ~ 1 cm range possible

• Discharge currents generated from 15 mA to 

250mA

• Discharge voltage required to maintain cross field 

current increases with increasing magnetic field as 

expected of a cross field device (e.g., Hall Thruster)

Source in operation
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Crossed Field Impedance

• Slope of the discharge voltage 

versus magnetic field strength gets 

steeper for decreasing discharge 

current

15
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Diagnostics – Surface 

Mount Probes
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Surface Mount

Button Probes

Surface Mount

Emissive Probes

Different Grades

of BN Ceramics
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Probes to Travel in the Plasma

17

Emissive Probe

Button Probe

Langmuir 

Probe Parallel 

to Magnetic 

Field

Regular 

Langmuir Probe

Regular 

Langmuir Probe
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Materials

• To directly compare the effect 

of SEE due to primary 

electron impact, the choice of 

the following materials will 

help provide clear distinction 

between SEE yield and 

plasma change behavior.

18
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Ceramic Surface Study
(SEE Yield Dependence on Surface Properties)

• Investigate sensitivity of SEE with

electron impact for ceramics of interest

in the presence of a background

plasma

– BN, Alumina, Macor, Quartz

• First-order scaling of discharge

characteristics extractable from

experiments

• Ceramic targets characterization pre-

and post-test via atomic force

microscopy, SEM, profilometers

(optical and tip based)

• Targets will be baked via quartz lamp

pretest to desorb gaseous monolayers

— control initial surface conditions and

chemistry, which in turn can affect

SEE yield

• For sample shown, the average

surface roughness, <Ra> = 4.35E+4

Angstroms (20 measurements)

– Ability to modify ceramic surfaces from

several um to 20 nm

9/25/201319

Materials already available at PSTL:

- Alumina (99.5% grade)

- Boron Nitride (HBR grade)
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Temperature Effects
(SEE Yield Dependence on Temperature)

• Study the effect of insulator 

temperature on the secondary 

electron yield (SEY) is important

• Temperature will be controlled 

using two devices:

– Thermoelectric Devices

• Capable to go from 253 K to 413 K in 

vacuum

– Flexible Heaters

• Capable to go from room temperature 

273 K to 473 K

• Bi-directional relay driven 

temperature controller is purchased 

for varying the temperature and 

studying the outgassing effects of 

the ceramic for the given 

temperature range and its impact 

on SEE yield

9/25/2013

20

Relay driven bi-directional 

temperature controller
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Next Steps

• Map out sheath profile variation due to SEE in the influence of magnetic 

field strength, discharge current, and electron gun current

• Study the EEDF of the plasma system and variation of its behavior due to 

SEE based on above mentioned causes

• Relating the data acquired with physical phenomena to real world Hall 

thrusters modeling to understand the system better and improve 

performance

21
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