Finite Difference Weighted Essentially Non-Oscillatory Schemes with Constrained Transport for Ideal MHD

Qi Tang

Department of Mathematics Michigan State University

Collaborator:

Andrew Christlieb – MSU James Rossmanith – ISU

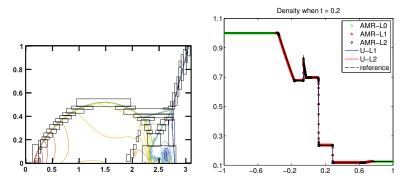
September 16, 2013

Contents

- Motivation
- Ideal MHD equations
- High-order FD-WENO scheme
- Constrained Transport method
- Magnetic potential equation
- Numerical results

Motivation

- Adaptive mesh refinement for plasma simulation
- High-order and efficient solver (5th-order FD-WENO)



[C.Shen, J.-M.Qiu, & Christlieb, 2011]

[Tang, etc, 2012]

Ideal MHD equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{u} \\ \mathcal{E} \\ \mathbf{B} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} \mathbf{u} + (p + \frac{1}{2}||\mathbf{B}||^2)\mathbf{I} - \mathbf{B}\mathbf{B} \\ \mathbf{u}(\mathcal{E} + p + \frac{1}{2}||\mathbf{B}||^2) - \mathbf{B}(\mathbf{u} \cdot \mathbf{B}) \\ \mathbf{u}\mathbf{B} - \mathbf{B}\mathbf{u} \end{bmatrix} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

where ρ , $\rho \mathbf{u}$ and \mathcal{E} is the total mass, momentum and energy density of the plasma system, \mathbf{B} is the magnetic field and p is the hydrodynamic pressure. The total energy density is given by

$$\mathcal{E} = \frac{\rho \|\mathbf{u}\|^2}{2} + \frac{p}{\gamma - 1} + \frac{\|\mathbf{B}\|^2}{2}$$

 $\gamma = 5/3$ is the ideal gas constant.

Hyperbolic Conservation Laws

The MHD equation forms a system of hyperbolic conservation laws

$$q_{,t} + \nabla \cdot \mathbf{F}(q) = 0,$$

where $q = (\rho, \rho \mathbf{u}, \mathcal{E}, \mathbf{B})$ are the conserved variables and \mathbf{F} is the flux tensor.

Numerical schemes for HCL

- Finite Difference (Lax-Friedrichs, artificial viscosity, FD-ENO/WENO)
- Finite Volume (Godunov schemes with Riemann solvers, HLL, HLLC, Roe, etc; MUSCL scheme; Lax-Wendroff type schemes; FV-ENO/WENO)
- Finite Element
- Discontinuous Galerkin
- and many more

High-order FD-WENO scheme for HCL

Consider an 1D scalar HCL

$$q_{,t} + f(u)_{,x} = 0$$

FD-WENO solve this system by:

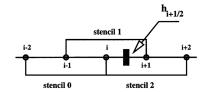
$$\frac{dq_i(t)}{dt} = -\frac{1}{\Delta x} (\hat{f}_{i+\frac{1}{2}} - \hat{f}_{i-\frac{1}{2}})$$

with numerical flux $\hat{f}_{i+\frac{1}{2}}$,

$$\hat{f}_{i+\frac{1}{2}} = \Phi_{\text{WENO}}(f_{i-p}, \dots, f_{i+q})$$

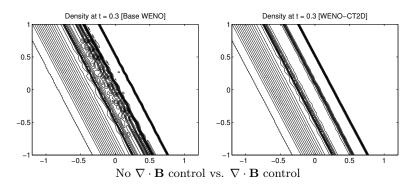
E.g., WENO5 spatial discretization has the idea:

- If q is SMOOTH, becomes a 5th-order central scheme.
- If NON-SMOOTH, close to a 3rd-order Upwinding scheme ⇒ Essentially No Oscillations



The role of $\nabla \cdot \mathbf{B} = 0$

Numerical solutions for ideal MHD need to satisfy the divergence free condition or at least control the divergence error on B in some discrete sense.



[Christlieb, Rossmanith & Tang, 2013]

Approaches to control $\nabla \cdot \mathbf{B}$

Different approaches to control $\nabla \cdot \mathbf{B}$:

- Projection method [Tóth, 2000], [Balsara & Kim, 2004], ...
- 8-wave formulation [Powell, 1994], [Powell, et al, 1999]
- Divergence cleaning approach [Dedner, et al, 1998]
- Constrained transport methods

Staggered: [Dai & Woodward 1998], [Ryu et al, 1998], [Balsara & Spicer, 1999], [De Sterck, 2001], [Balsara, 2004], [Londrillo & Del Zanna 2004], ...

Unstaggered: [Tóth, 2000], [Fey & Torrilhon, 2003], [Rossmanith, 2006], [Helzel, et al. 2011, 2013] ...

Constrained Transport Method

Introduce the vector potential A

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \mathbf{B} = \nabla \times \mathbf{A}$$

So the evolution equation of $\bf B$

$$\mathbf{B}_{,t} + \nabla \times (\mathbf{B} \times \mathbf{u}) = 0$$

becomes

$$\nabla \times (\mathbf{A}_{,t} + (\nabla \times \mathbf{A}) \times \mathbf{u}) = 0$$

$$\Rightarrow \mathbf{A}_{t} + (\nabla \times \mathbf{A}) \times \mathbf{u} = -\nabla \psi$$

Introducing the Weyl gauge, i.e., setting $\psi \equiv 0$,

$$\mathbf{A}_{,t} + (\nabla \times \mathbf{A}) \times \mathbf{u} = 0$$

In our schemes, **A** and **B** are point values on the same mesh.

See e.g. [C.Helzel, Rossmanith & B.Taetz, 2011] for different choices of gauge condition.

Outline of the methods using a MOL approach

- **0** Start with Q_{MHD}^n and Q_{A}^n (the solution at t^n).
- 1 Build the right-hand sides of both semi-discrete systems, and independently update each system:

$$\begin{aligned} Q_{\text{MHD}}^* &= Q_{\text{MHD}}^n + \Delta t \, \mathcal{L}(Q_{\text{MHD}}^n), \\ Q_{\text{A}}^{n+1} &= Q_{\text{A}}^n + \Delta t \, \mathcal{H}(Q_{\text{A}}^n, \mathbf{u}^n), \end{aligned}$$

where $Q_{\text{MHD}}^* = (\rho^{n+1}, \rho \mathbf{u}^{n+1}, \mathcal{E}^{n+1}, \mathbf{B}^*)$. \mathbf{B}^* is the predicted magnetic field that in general does not satisfy a discrete divergence-free constraint.

2 Replace \mathbf{B}^* by a 4th-order-accurate discrete curl of the magnetic potential Q_{Λ}^{n+1} :

$$\mathbf{B}^{n+1} = \nabla \times Q_{\mathbf{A}}^{n+1}.$$

 $4^{\rm th}$ -order 10-stage SSP-RK method is used as time integrator $4^{\rm th}$ -order accurate in space and time for smooth Alfvén wave problem

Low-Storage SSP-RK4 Time-stepping

$$\begin{array}{ll} 1 & Q^{(1)} = Q^n; \\ 2 & Q^{(2)} = Q^n; \\ 3 & \text{for } i = 1:5 \text{ do} \\ 4 & Q^{(1)} = Q^{(1)} + \frac{\Delta t}{6} \, \mathcal{L}\left(Q^{(1)}\right); \\ 5 & \text{end} \\ 6 & Q^{(2)} = \frac{1}{25} \, Q^{(2)} + \frac{9}{25} \, Q^{(1)}; \\ 7 & Q^{(1)} = 15 \, Q^{(2)} - 5 \, Q^{(1)}; \\ 8 & \text{for } i = 6:9 \text{ do} \\ 9 & Q^{(1)} = Q^{(1)} + \frac{\Delta t}{6} \, \mathcal{L}\left(Q^{(1)}\right); \\ \mathbf{10} & \text{end} \\ \mathbf{11} & Q^{n+1} = Q^{(2)} + \frac{3}{5} \, Q^{(1)} + \frac{\Delta t}{10} \, \mathcal{L}\left(Q^{(1)}\right); \end{array}$$

This integrator coupled with FD-WENO is stable and 'TVD' up to $\mathrm{CFL} = 3.07$

[Ketcheson, 2008]

The evolution equation of **A**

$$\mathbf{A}_{,t} + (\nabla \times \mathbf{A}) \times \mathbf{u} = 0$$

can be rewritten as,

$$\mathbf{A}_{,t} + N_1 \, \mathbf{A}_{,x} + N_2 \, \mathbf{A}_{,y} + N_3 \, \mathbf{A}_{,z} = 0,$$

where

$$N_1 = \begin{bmatrix} 0 & -u^2 & -u^3 \\ 0 & u^1 & 0 \\ 0 & 0 & u^1 \end{bmatrix}, N_2 = \begin{bmatrix} u^2 & 0 & 0 \\ -u^1 & 0 & -u^3 \\ 0 & 0 & u^2 \end{bmatrix}, N_3 = \begin{bmatrix} u^3 & 0 & 0 \\ 0 & u^3 & 0 \\ -u^1 & -u^2 & 0 \end{bmatrix}.$$

The flux Jacobian matrix in some arbitrary direction $\mathbf{n} = (n^1, n^2, n^2)$:

$$n^1N_1 + n^2N_2 + n^3N_3 = \begin{bmatrix} n^2u^2 + n^3u^3 & -n^1u^2 & -n^1u^3 \\ -n^2u^1 & n^1u^1 + n^3u^3 & -n^2u^3 \\ -n^3u^1 & -n^3u^2 & n^1u^1 + n^2u^2 \end{bmatrix}.$$

The evolution equation of A

The eigenvalues of the above matrix are

$$\lambda^1 = 0, \quad \lambda^2 = \lambda^3 = \mathbf{n} \cdot \mathbf{u},$$

The matrix of right eigenvectors can be written as

$$R = \left[\begin{array}{c|c} r^{(1)} & r^{(2)} & r^{(3)} \end{array} \right] = \left[\begin{matrix} n^1 & n^2u^3 - n^3u^2 & u^1(\mathbf{u} \cdot \mathbf{n}) - n^1\|\mathbf{u}\|^2 \\ n^2 & n^3u^1 - n^1u^3 & u^2(\mathbf{u} \cdot \mathbf{n}) - n^2\|\mathbf{u}\|^2 \\ n^3 & n^1u^2 - n^2u^1 & u^3(\mathbf{u} \cdot \mathbf{n}) - n^3\|\mathbf{u}\|^2 \end{matrix} \right].$$

Assume that $\|\mathbf{u}\| \neq 0$ and $\|\mathbf{n}\| = 1$

$$\det(R) = -\|\mathbf{u}\|^3 \cos(\alpha) \sin(\alpha),$$

where α is the angle between **n** and **u**.

There exist four degenerate directions, $\alpha = 0, \pi/2, \pi$, and $3\pi/2$, in which the eigenvectors are incomplete. Hence, the new system is only weakly hyperbolic.

A special case – 2D

The divergence-free condition becomes

$$\nabla \cdot \mathbf{B} = B_{,x}^1 + B_{,y}^2 = 0$$

The magnetic field becomes

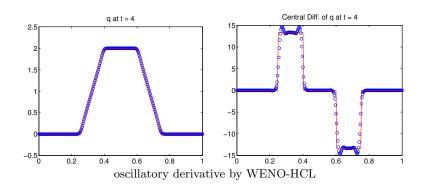
$$B^1 = A_{,y}^3$$
 and $B^2 = -A_{,x}^3$

Only need to solve a scalar potential A^3

$$A_{,t}^3 + u^1 A_{,x}^3 + u^2 A_{,y}^3 = 0$$

This case is *strongly hyperbolic*.

1D Advection Equation $q_{,t} + q_{,x} = 0$



WENO-HCL scheme

Reconstruction applied to waves $q \Rightarrow$ non-oscillatory solution

[Christlieb, Rossmanith & Tang, 2013]

New Limiting Strategy

Our goal is:

To control the oscillation in the derivative (B) when computed by

$$\mathbf{B} = \nabla \times \mathbf{A}$$

Limiting Strategy:

Reconstruction applied to wave derivatives $q_{,x} \Rightarrow$ non-oscillatory derivative (**B**)

WENO for 1D Hamiltion-Jacobi

Consider a 1D Hamilton–Jacobi equation

$$q_{,t} + H(t, x, q, q_{,x}) = 0,$$

WENO-HJ scheme has the form:

$$\frac{dq_{ij}(t)}{dt} = -\hat{H}(t, x_i, q_i, q_{,xi}^-, q_{,xi}^+),$$

where \hat{H} is the numerical Hamiltonian and

$$\begin{split} q_{,xi}^- &= \Phi_{\text{WENO5}}\left(\frac{\Delta^+ q_{i-3}}{\Delta x}, \frac{\Delta^+ q_{i-2}}{\Delta x}, \frac{\Delta^+ q_{i-1}}{\Delta x}, \frac{\Delta^+ q_i}{\Delta x}, \frac{\Delta^+ q_{i+1}}{\Delta x}\right), \\ q_{,xi}^+ &= \Phi_{\text{WENO5}}\left(\frac{\Delta^+ q_{i+2}}{\Delta x}, \frac{\Delta^+ q_{i+1}}{\Delta x}, \frac{\Delta^+ q_i}{\Delta x}, \frac{\Delta^+ q_{i-1}}{\Delta x}, \frac{\Delta^+ q_{i-2}}{\Delta x}\right), \end{split}$$

where

$$\Delta^+ q_{ij} := q_{i+1j} - q_{ij},$$

[Jiang & Peng, 2000]

Numerical Hamiltonian

 \hat{H} is typically *Lipschitz continuous* and consistent with H:

$$\hat{H}(t, x, q, u, u) = H(t, x, q, u),$$

E.g., a Lax-Friedrichs-type definition:

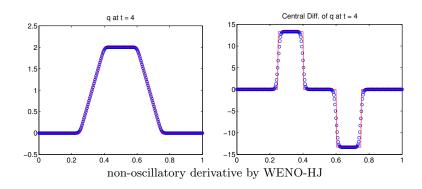
$$\hat{H}(t, x, q, q_x^-, q_x^+) = H(t, x, q, \frac{q_x^- + q_x^+}{2}) - \alpha(\frac{q_x^+ - q_x^-}{2}),$$

where

$$\alpha = \max_{u \in I(q_x^-, q_x^+)} |H_{,u}(t, x, q, u)|,$$

where $I(q_x^-, q_x^+)$ is the interval between q_x^- and q_x^+ .

1D Advection Equation $q_{,t} + q_{,x} = 0$



[Christlieb, Rossmanith & Tang, 2013]

A^3 in 2D case

In 2D

$$A_{,t}^3 + u^1(x,y)A_{,x}^3 + u^2(x,y)A_{,y}^3 = 0$$

spatial discretization:

$$u_{ij}^{1}A_{,xij}=u_{ij}^{1}\left(\frac{A_{,xij}^{3+}+A_{,xij}^{3-}}{2}\right)-\alpha\left(\frac{A_{,xij}^{3+}-A_{,xij}^{3-}}{2}\right)$$

where

$$\alpha = \max_{i,j} \left| u_{ij}^1 \right|$$

$$\begin{split} A_{,xij}^{3-} &= \Phi_{\text{WENO5}}(\frac{\Delta^{+}A_{i-3j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i-2j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i-1j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i,j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i+1,j}^{3}}{\Delta x}), \\ A_{,xij}^{3+} &= \Phi_{\text{WENO5}}(\frac{\Delta^{+}A_{i+2j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i+1j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i-1j}^{3}}{\Delta x}, \frac{\Delta^{+}A_{i-2j}^{3}}{\Delta x}). \end{split}$$

A in 3D case

$$\begin{split} \begin{bmatrix} A^1 \\ A^2 \\ A^3 \end{bmatrix}_{,t} + \begin{bmatrix} 0 & -u^2 & -u^3 \\ 0 & u^1 & 0 \\ 0 & 0 & u^1 \end{bmatrix} \begin{bmatrix} A^1 \\ A^2 \\ A^3 \end{bmatrix}_{,x} + \begin{bmatrix} u^2 & 0 & 0 \\ -u^1 & 0 & -u^3 \\ 0 & 0 & u^2 \end{bmatrix} \begin{bmatrix} A^1 \\ A^2 \\ A^3 \end{bmatrix}_{,y} \\ + \begin{bmatrix} u^3 & 0 & 0 \\ 0 & u^3 & 0 \\ -u^1 & -u^2 & 0 \end{bmatrix} \begin{bmatrix} A^1 \\ A^2 \\ A^3 \end{bmatrix}_{,z} = 0 \end{split}$$

E.g.

$$A_{,t}^{1} - u^{2} A_{,x}^{2} - u^{3} A_{,x}^{3} + u^{2} A_{,y}^{1} + u^{3} A_{,z}^{1} = 0$$

Main idea:

WENO-HJ + Reconstruction applied to the derivatives $A_{,x}^2$ and $A_{,x}^3$

E.g.,

$$u^{2}A_{,x}^{2} = u^{2}\left(\frac{A_{,x}^{2+} + A_{,x}^{2-}}{2}\right)$$

Artificial resistivity

E.g.,

$$A^1_{,t} - u^2 A^2_{,x} - u^3 A^3_{,x} + u^2 A^1_{,y} + u^3 A^1_{,z} = \varepsilon^1 A^1_{,x,x}$$

 ε^1 is evaluated by

$$\varepsilon^1 = 2\nu\gamma^1 \frac{\Delta x^2}{\Delta t},$$

where γ^1 is the smoothness indicator of A^1 , and ν is a footnotesize constant. The smoothness indicator γ^1 is computed by:

$$\gamma_{ijk}^1 = \left| \frac{a^-}{a^- + a^+} - \frac{1}{2} \right|,$$

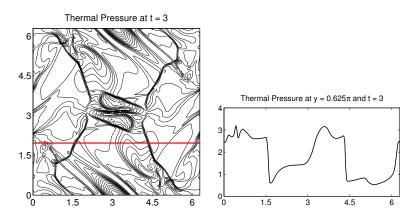
where

$$a^{-} = \left\{ \epsilon + \left(\Delta x \, A_{,xijk}^{1-} \right)^{2} \right\}^{-2} \quad a^{+} = \left\{ \epsilon + \left(\Delta x \, A_{,xijk}^{1+} \right)^{2} \right\}^{-2},$$

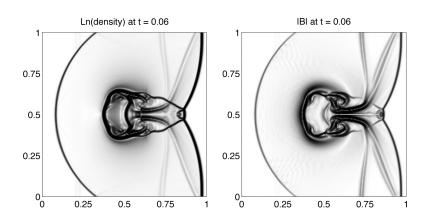
Features of our schemes

- There is no mesh staggering.
- It is an explicit MOL approach.
- No spatial integration or multidimensional reconstructions
- B satisfies a discrete divergence-free condition exactly.
- All the quantities $(\rho, \rho \mathbf{u}, \mathcal{E}, \mathbf{B})$ are conserved.
- Oscillations in the solutions are controlled (including **B**).

Orszag-Tang Vortex

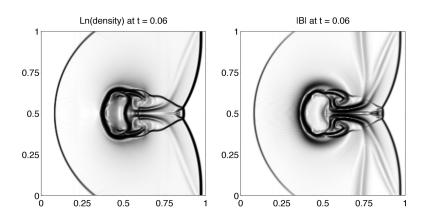


The simulation can run to t = 30 and no significant oscillations.



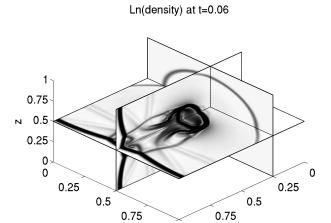
The resolution is 256×256 .

[Christlieb, Rossmanith & Tang, 2013]



The resolution is 256×256 . [Rossmanith, 2006]

[Rossmanith, MHDCLAW, Available from http://www.public.iastate.edu/~rossmani/claw/MHDCLAW]

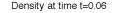


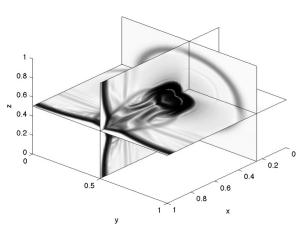
У

The resolution is 128³

[Christlieb, Rossmanith & Tang, 2013]

Х





The resolution is 150^3

[Helzel, Rossmanith, & Taetz, 2013]

Conclusion and Future Work

- \bullet The WENO CT methods have been successfully used to solve 2D/3D ideal MHD problems.
- It is high-order and efficient. (E.g. vs 3rd-order unsplit FV code)
- There is evidence that a high-order scheme can obtain some structure with fewer grid points.
- Future works include the extension to the AMR and positivity preserving.

Thank you!

Reference

- J.A. Rossmanith. An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput., 28:1766–1797, 2006.
- C. Helzel, J.A. Rossmanith, and B. Taetz. An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations. J. Comp. Phys., 227:9527–9553, 2011.
- C. Helzel, J.A. Rossmanith, and B. Taetz. A high-order unstaggered constrained- transport method for the three-dimensional ideal magnetohydrodynamic equations based on the method of lines. SIAM J. Sci. Comput., 35(2):A623–A651, 2013.
- A.J. Christlieb, J.A. Rossmanith, and Q. Tang. Finite Difference Weighted Essentially Non-Oscillatory Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations. submitted to J. Comp. Phys. 2013.