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Motivation

• Adaptive mesh refinement for plasma simulation

• High-order and efficient solver (5th-order FD-WENO)
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Ideal MHD equations

∂

∂t


ρ
ρu
E
B

+∇ ·


ρu

ρuu + (p+ 1
2
||B||2)I−BB

u(E + p+ 1
2
||B||2)−B(u ·B)

uB−Bu

 = 0

∇ ·B = 0

where ρ, ρu and E is the total mass, momentum and energy density of the
plasma system, B is the magnetic field and p is the hydrodynamic pressure.
The total energy density is given by

E =
ρ‖u‖2

2
+

p

γ − 1
+
‖B‖2

2

γ = 5/3 is the ideal gas constant.
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Hyperbolic Conservation Laws

The MHD equation forms a system of hyperbolic conservation laws

q,t +∇ · F(q) = 0,

where q = (ρ, ρu, E ,B) are the conserved variables and F is the flux tensor.

Numerical schemes for HCL

• Finite Difference (Lax-Friedrichs, artificial viscosity,
FD-ENO/WENO)

• Finite Volume (Godunov schemes with Riemann solvers, HLL, HLLC,
Roe, etc; MUSCL scheme; Lax-Wendroff type schemes;
FV-ENO/WENO)

• Finite Element

• Discontinuous Galerkin

• and many more
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High-order FD-WENO scheme for HCL

Consider an 1D scalar HCL

q,t + f(u),x = 0

FD-WENO solve this system by:
dqi(t)

dt
= − 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
)

with numerical flux f̂i+ 1
2
,

f̂i+ 1
2

= ΦWENO(fi−p, ... , fi+q)

E.g., WENO5 spatial discretization has the idea:
• If q is SMOOTH, becomes a 5th-order central scheme.
• If NON-SMOOTH, close to a 3rd-order Upwinding scheme ⇒

Essentially No Oscillations
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The role of ∇ ·B = 0

Numerical solutions for ideal MHD need to satisfy the divergence free
condition or at least control the divergence error on B in some discrete
sense.

Density at t = 0.3 [Base WENO]
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Approaches to control ∇ ·B

Different approaches to control ∇ ·B:

• Projection method [Tóth, 2000], [Balsara & Kim, 2004], ...

• 8-wave formulation [Powell, 1994], [Powell, et al, 1999]

• Divergence cleaning approach [Dedner, et al, 1998]

• Constrained transport methods
Staggered: [Dai & Woodward 1998], [Ryu et al, 1998], [Balsara & Spicer, 1999], [De

Sterck, 2001], [Balsara, 2004], [Londrillo & Del Zanna 2004], ...

Unstaggered: [Tóth, 2000], [Fey & Torrilhon, 2003], [Rossmanith, 2006], [Helzel,
et al, 2011, 2013] ...
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Constrained Transport Method

Introduce the vector potential A

∇ ·B = 0 ⇒ B = ∇×A

So the evolution equation of B

B,t +∇× (B× u) = 0

becomes

∇× (A,t + (∇×A)× u) = 0

⇒ At + (∇×A)× u = −∇ψ

Introducing the Weyl gauge, i.e., setting ψ ≡ 0,

A,t + (∇×A)× u = 0

In our schemes, A and B are point values on the same mesh.
See e.g. [C.Helzel, Rossmanith & B.Taetz, 2011] for different choices of gauge condition.
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Outline of the methods using a MOL approach

0 Start with Qn
MHD and Qn

A (the solution at tn).

1 Build the right-hand sides of both semi-discrete systems, and
independently update each system:

Q∗MHD = Qn
MHD + ∆tL(Qn

MHD),

Qn+1
A = Qn

A + ∆tH(Qn
A,u

n),

where Q∗MHD = (ρn+1, ρun+1, En+1,B∗). B∗ is the predicted magnetic
field that in general does not satisfy a discrete divergence-free
constraint.

2 Replace B∗ by a 4th-order-accurate discrete curl of the magnetic
potential Qn+1

A :
Bn+1 = ∇×Qn+1

A .

4th-order 10-stage SSP-RK method is used as time integrator
4th-order accurate in space and time for smooth Alfvén wave problem
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Low-Storage SSP-RK4 Time-stepping

1 Q(1) = Qn;
2 Q(2) = Qn;
3 for i = 1 : 5 do
4 Q(1) = Q(1) + ∆t

6
L
(
Q(1)

)
;

5 end
6 Q(2) = 1

25
Q(2) + 9

25
Q(1);

7 Q(1) = 15Q(2) − 5Q(1);
8 for i = 6 : 9 do
9 Q(1) = Q(1) + ∆t

6
L
(
Q(1)

)
;

10 end

11 Qn+1 = Q(2) + 3
5
Q(1) + ∆t

10
L
(
Q(1)

)
;

This integrator coupled with FD-WENO is stable and ’TVD’ up to
CFL = 3.07

[Ketcheson, 2008]
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The evolution equation of A

A,t + (∇×A)× u = 0

can be rewritten as,

A,t +N1 A,x +N2 A,y +N3 A,z = 0,

where

N1 =

0 −u2 −u3

0 u1 0
0 0 u1

 , N2 =

 u2 0 0
−u1 0 −u3

0 0 u2

 , N3 =

 u3 0 0
0 u3 0
−u1 −u2 0

 .
The flux Jacobian matrix in some arbitrary direction n = (n1, n2, n2):

n1N1 + n2N2 + n3N3 =

n2u2 + n3u3 −n1u2 −n1u3

−n2u1 n1u1 + n3u3 −n2u3

−n3u1 −n3u2 n1u1 + n2u2

 .
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The evolution equation of A

The eigenvalues of the above matrix are

λ1 = 0, λ2 = λ3 = n · u,

The matrix of right eigenvectors can be written as

R =

 r(1) r(2) r(3)

 =

n1 n2u3 − n3u2 u1(u · n)− n1‖u‖2
n2 n3u1 − n1u3 u2(u · n)− n2‖u‖2
n3 n1u2 − n2u1 u3(u · n)− n3‖u‖2

 .
Assume that ‖u‖ 6= 0 and ‖n‖ = 1

det(R) = −‖u‖3 cos(α) sin(α),

where α is the angle between n and u.
There exist four degenerate directions, α = 0, π/2, π, and 3π/2, in which the
eigenvectors are incomplete. Hence, the new system is only weakly
hyperbolic.
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A special case – 2D

The divergence-free condition becomes

∇ ·B = B1
,x +B2

,y = 0

The magnetic field becomes

B1 = A3
,y and B2 = −A3

,x

Only need to solve a scalar potential A3

A3
,t + u1A3

,x + u2A3
,y = 0

This case is strongly hyperbolic.
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1D Advection Equation q,t + q,x = 0
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Reconstruction applied to waves q ⇒ non-oscillatory solution

[Christlieb, Rossmanith & Tang, 2013]
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New Limiting Strategy

Our goal is:

To control the oscillation in the derivative (B) when computed by

B = ∇×A

Limiting Strategy:

Reconstruction applied to wave derivatives q,x ⇒
non-oscillatory derivative (B)
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WENO for 1D Hamiltion–Jacobi

Consider a 1D Hamilton–Jacobi equation

q,t +H (t, x, q, q,x) = 0,

WENO-HJ scheme has the form:

dqij(t)

dt
= −Ĥ

(
t, xi, qi, q

−
,xi, q

+
,xi

)
,

where Ĥ is the numerical Hamiltonian and

q−,xi = ΦWENO5

(
∆+qi−3

∆x
,

∆+qi−2

∆x
,

∆+qi−1

∆x
,

∆+qi
∆x

,
∆+qi+1

∆x

)
,

q+
,xi = ΦWENO5

(
∆+qi+2

∆x
,

∆+qi+1

∆x
,

∆+qi
∆x

,
∆+qi−1

∆x
,

∆+qi−2

∆x

)
,

where
∆+qij := qi+1j − qij ,

[Jiang & Peng, 2000]
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Numerical Hamiltonian

Ĥ is typically Lipschitz continuous and consistent with H:

Ĥ (t, x, q, u, u) = H (t, x, q, u) ,

E.g., a Lax-Friedrichs-type definition:

Ĥ
(
t, x, q, q−x , q

+
x

)
=H

(
t, x, q,

q−x + q+
x

2

)
− α

(
q+
x − q−x

2

)
,

where

α = max
u∈ I(q−x ,q+x )

|H,u(t, x, q, u)| ,

where I(q−x , q
+
x ) is the interval between q−x and q+

x .
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1D Advection Equation q,t + q,x = 0
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A3 in 2D case

In 2D
A3

,t + u1(x, y)A3
,x + u2(x, y)A3

,y = 0

spatial discretization:

u1
ijA,xij = u1

ij

(
A3+

,xij +A3−
,xij

2

)
− α

(
A3+

,xij −A
3−
,xij

2

)
where

α = max
i,j

∣∣u1
ij

∣∣
A3−

,xij = ΦWENO5(
∆+A3

i−3j

∆x
,

∆+A3
i−2j

∆x
,

∆+A3
i−1j

∆x
,

∆+A3
i,j

∆x
,

∆+A3
i+1,j

∆x
),

A3+
,xij = ΦWENO5(

∆+A3
i+2j

∆x
,

∆+A3
i+1j

∆x
,

∆+A3
ij

∆x
,

∆+A3
i−1j

∆x
,

∆+A3
i−2j

∆x
).
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A in 3D case

A1

A2

A3


,t

+

0 −u2 −u3

0 u1 0
0 0 u1

A1

A2

A3


,x

+

 u2 0 0
−u1 0 −u3

0 0 u2

A1

A2

A3


,y

+

 u3 0 0
0 u3 0
−u1 −u2 0

A1

A2

A3


,z

= 0

E.g.
A1

,t − u2A2
,x − u3A3

,x + u2A1
,y + u3A1

,z = 0

Main idea:

WENO-HJ + Reconstruction applied to the derivatives A2
,x and A3

,x

E.g.,

u2A2
,x = u2

(
A2+

,x +A2−
,x

2

)
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Artificial resistivity

E.g.,
A1

,t − u2A2
,x − u3A3

,x + u2A1
,y + u3A1

,z = ε1A1
,x,x

ε1 is evaluated by

ε1 = 2νγ1 ∆x2

∆t
,

where γ1 is the smoothness indicator of A1, and ν is a footnotesize constant.
The smoothness indicator γ1 is computed by:

γ1
ijk =

∣∣∣∣ a−

a− + a+
− 1

2

∣∣∣∣ ,
where

a− =
{
ε+

(
∆xA1−

,xijk

)2}−2

a+ =
{
ε+

(
∆xA1+

,xijk

)2}−2

,
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Features of our schemes

• There is no mesh staggering.

• It is an explicit MOL approach.

• No spatial integration or multidimensional reconstructions

• B satisfies a discrete divergence-free condition exactly.

• All the quantities (ρ, ρu, E ,B) are conserved.

• Oscillations in the solutions are controlled (including B).
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Orszag-Tang Vortex

Thermal Pressure at t = 3
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The simulation can run to t = 30 and no significant oscillations.
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2D Cloud-Shock Interaction

The resolution is 256× 256.
[Christlieb, Rossmanith & Tang, 2013]
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2D Cloud-Shock Interaction

The resolution is 256× 256.
[Rossmanith, 2006]

[Rossmanith, mhdclaw, Available from http://www.public.iastate.edu/˜rossmani/claw/MHDCLAW]
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3D Cloud-Shock Interaction

The resolution is 1283
[Christlieb, Rossmanith & Tang, 2013]
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3D Cloud-Shock Interaction

The resolution is 1503
[Helzel, Rossmanith, & Taetz, 2013]
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Conclusion and Future Work

• The WENO CT methods have been successfully used to solve 2D/3D
ideal MHD problems.

• It is high-order and efficient. (E.g. vs 3rd-order unsplit FV code)

• There is evidence that a high-order scheme can obtain some structure
with fewer grid points.

• Future works include the extension to the AMR and positivity
preserving.

Thank you!
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