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e Adaptive mesh refinement for plasma simulation

e High-order and efficient solver (5'"-order FD-WENO)
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[C.Shen, J.-M.Qiu, & Christlieb, 2011]
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Ideal MHD equations

P pu
9 |pul puu+ (p+5|B|I)I-BB | _
at | & u+p+3||B|*) —B(u-B)|
B uB — Bu

V-B=0

where p, pu and £ is the total mass, momentum and energy density of the
plasma system, B is the magnetic field and p is the hydrodynamic pressure.
The total energy density is given by

pllul® P IB|*
g:
2 517 2

~ = 5/3 is the ideal gas constant.
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Hyperbolic Conservation Laws

The MHD equation forms a system of hyperbolic conservation laws

q,t +V- F(q) = 07

where g = (p, pu, £, B) are the conserved variables and F is the flux tensor.

Numerical schemes for HCL

Finite Difference (Lax-Friedrichs, artificial viscosity,
FD-ENO/WENO)

Finite Volume (Godunov schemes with Riemann solvers, HLL, HLLC,
Roe, etc; MUSCL scheme; Lax-Wendroff type schemes;
FV-ENO/WENO)

Finite Element
Discontinuous Galerkin

and many more
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High-order FD-WENO scheme for HCL

Consider an 1D scalar HCL

gt + f(u)a =0
FD-WENO solve this system by:
dqi(t) o 1 » B
at Am(fi+% fz—%)
with numerical flux fz 41
fH% = ®weno(fi-p, - » fitq)

E.g., WENOS5 spatial discretization has the idea:
e If ¢ is SMIOOTH, becomes a 5th-order central scheme.

e [f NON-SMOOTH, close to a 3rd-order Upwinding scheme =-
Essentially No Oscillations

stencil 1

o

stencil 0 stencil 2 6
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The role of V-B =0

Numerical solutions for ideal MHD need to satisfy the divergence free

condition or at least control the divergence error on B in some discrete
sense.

Density at t = 0.3 [Base WENO] Density at t = 0.3 [WENO-CT2D]
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No V - B control vs. V - B control

[Christlieb, Rossmanith & Tang, 2013]
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wches to control V - B

Different approaches to control V - B:
® Projection method [Téth, 2000], [Balsara & Kim, 2004], ...
e 8-wave formulation [Powell, 1994], [Powell, et al, 1999]
® Divergence cleaning approach [Dedner, et al, 1998]

e Constrained transport methods
Staggered: [Dai & Woodward 1998], [Ryu et al, 1998], [Balsara & Spicer, 1999], [De
Sterck, 2001], [Balsara, 2004|, [Londrillo & Del Zanna 2004], ...

Unstaggered: [Toth, 2000], [Fey & Torrilhon, 2003], [Rossmanith, 2006], [Helzel,
et al, 2011, 2013] ...
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Constrained Transport Method

Introduce the wvector potential A
V-B=0 = B=VxA
So the evolution equation of B
B:+Vx(Bxu=0
becomes

Vx(A:+(VXxA)xu)=0
=>A+(VXA)xu=-Vy

Introducing the Weyl gauge, i.e., setting ¢ =0,
A;+(VxA)xu=0

In our schemes, A and B are point values on the same mesh.

See e.g. [C.Helzel, Rossmanith & B.Taetz, 2011] for different choices of gauge condition.
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Outline of the methods using a MOL approach

@® Start with Qyup and Q% (the solution at t™).

@ Build the right-hand sides of both semi-discrete systems, and
independently update each system:

Quup = Quup + At L(Qnp),
AT = QR+ ALH(QR,u"),
where Qimp = (p" !, pu™ !, "L B*). B* is the predicted magnetic

field that in general does not satisfy a discrete divergence-free
constraint.

® Replace B* by a 4™-order-accurate discrete curl of the magnetic

potential Q7 t':

B" =V x Qi

4*"_order 10-stage SSP-RK method is used as time integrator

4t _order accurate in space and time for smooth Alfvén wave problem
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Low-Storage SSP-RK4 Time-stepping

1 QY = Q™

2 Q¥ = Qr;

3 fori=1:5do

4 QW =QW 4 atp (Qu));
end

Q(Q) _ % Q(2) + 2% Q(l);

QW =15Q® —5QW;

for i =6:9 do

QW =QW 4 atp (Qm);

o N o o

©

10 end

11 QU =Q® 4+ 3QW 4 At g (Qm);

This integrator coupled with FD-WENO is stable and "TVD’ up to
CFL = 3.07

[Ketcheson, 2008]
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The evolution equation of A

A,t+(V><A)><u:0

can be rewritten as,

A,t +N1 A,:ﬂ + N2 A,y + N3 A,Z = 03

where
0 —u? -8 w 0 0 u® 0 0
N = [0 &t 0 |, No=|—-ut 0 —u®| ,Ns=]| 0 w0
0 0 ul 0 0 u? —ut —u? 0

The flux Jacobian matrix in some arbitrary direction n = (n',n?, n?):
n2u? + niu® —ntu? —ntu?
1 2 3
n N1 +n"Ny+n"N3 = —n2u! ntul +n3ud —n?y3

1,1 2 2
—nlul —n3u? nu +n‘u
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The evolution equation of A

The eigenvalues of the above matrix are

The matrix of right eigenvectors can be written as
n' n?u® —nPu? ul'(u-n) —ntu)?
R=| v | r@ |+ | =02 ndu! —n'v® w?(u-n) —n?|u)?
n® n'v® —n*u' WP(u-n) —nd||u)?
Assume that ||u]| # 0 and |n|| =1
det(R) = —||u|® cos(a) sin(c),

where « is the angle between n and u.
There exist four degenerate directions, a = 0,7/2, 7, and 37/2, in which the
eigenvectors are incomplete. Hence, the new system is only weakly

hyperbolic.
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A special case — 2D

The divergence-free condition becomes
V-B=B,+B%=0
The magnetic field becomes
B'=A% and B®=-A°
Only need to solve a scalar potential A3
A,3t + ulA?’m + u2A?y =0

This case is strongly hyperbolic.
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1D Advection Equation ¢; + ¢, =0

qatt=4 Central Diff. of qatt=4
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oscillatory derivative by WENO-HCL

WENO-HCL scheme

Reconstruction applied to waves ¢ = non-oscillatory solution

[Christlieb, Rossmanith & Tang, 2013]
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New Limiting Strategy

Our goal is:

To control the oscillation in the derivative (B) when computed by

B=VxA

Limiting Strategy:

Reconstruction applied to wave derivatives ¢, =
non-oscillatory derivative (B)
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WENO for 1D Hamiltion—Jacobi

Consider a 1D Hamilton—Jacobi equation
¢t +H(t,r,q,q2) =0,
WENO-HJ scheme has the form:

dqi;(t)

o7 = —]EI (t,ﬂ?z,q“q;mq,—;z) )

where H is the numerical Hamiltonian and

A+Qz 3 A+Qz 2 A+Qz 1 AJrqz A qi+1
Az ' Az Az ' Az’ Az ’
Atgiys Atqip Afq Afgi A+qi72)

4.5 = PweNOs (

+ _
q’“_CI)WENOS( Az ° Az B Az’ Az T Ax

where
A qij = qiv1y — aij,

[Jiang & Peng, 2000]
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Numerical Hamiltonian

His typically Lipschitz continuous and consistent with H:

H(t7x7q7u’u) :H(t7x’q7u)7

E.g., a Lax-Friedrichs-type definition:

. -t +
H(t7x7Q7q;7q;>) =H (t:%q,%) _a<u)7

where

o = max |H,u(t7x7qvu)|7
uw€l(qy,q)

where I(q, ,q2) is the interval between ¢, and ¢ .
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1D Advection Equation ¢; + ¢, =0

qatt=4 Central Diff. of gatt=4

i
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non-oscillatory derivative by WENO-HJ

[Christlieb, Rossmanith & Tang, 2013]
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A3 in 2D case

In 2D
A?t + ul (l’, y)A?w + uz(xv y)A?y =0

spatial discretization:

3+ 3— 3+ 3—
Ui A iy = Ui (A’mj ; A’mj) -« (A’mj ; A’wij>

where
o = max [uy;]
i
A (S A ATALy ATAL, ATAY AAL,
R Arx ' Az 7 Az T Az’ Ax
3 3 3 3 3
I Az ' Az ' Ax Az Az

)’

).
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A in 3D case

Al 0 —u? —ud) [A! w0 0 Al
A%l + o Wt 0 A? +|—ut 0 —ud| | A%
Ao 0wt ] A% 0 0 ? A3y
u® 0 0] 1At
+10 wd 0| [A%] =0
—ut —u? 0] A3 .
E.g.
Al =P A —PAR Al dPAL =0
Main idea:

WENO-HJ 4 Reconstruction applied to the derivatives A?z and Ajo’z

E.g.,

AZF 1 A%
’U/QA,QII’U,Q( ,T —; ,T >
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Artificial resistivity

E.g.,
Al =P A —PAR Al FPAlL =t AL

sTy

¢! is evaluated by

1 A$2
At’

el = 2u7y

where ! is the smoothness indicator of A', and v is a footnotesize constant.
The smoothness indicator 4! is computed by:

I .
rYZJk—a_+a+ 27

where

o ={er @ean)} @ = {er e’}
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Features of our schemes

® There is no mesh staggering.
e [t is an explicit MOL approach.
® No spatial integration or multidimensional reconstructions

e B satisfies a discrete divergence-free condition exactly.

All the quantities (p, pu, £, B) are conserved.

Oscillations in the solutions are controlled (including B).
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Orszag-Tang Vortex

Thermal Pressure aty = 0.625rand t = 3
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The simulation can run to ¢ = 30 and no significant oscillations.
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2D Cloud-Shock Interaction

Ln(density) at t = 0.06 IBlatt=0.06
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The resolution is 256 x 256.

[Christlieb, Rossmanith & Tang, 2013]
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2D Cloud-Shock Interaction

Ln(density) at t = 0.06 IBlatt=0.06
1 1
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The resolution is 256 x 256.
[Rossmanith, 2006]

[Rossmanith, MHDCLAW, Available from http://www.public.iastate.edu/ rossmani/claw/MHDCLAW]

N
o

N
~



Qi Tang FD WENO MHD

3D Cloud-Shock Interaction

Ln(density) at t=0.06

The resolution is 128% [Christlieb, Rossmanith & Tang, 2013]
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3D Cloud-Shock Interaction

Density at time t=0.06

The resolution is 150% [Helzel, Rossmanith, & Taetz, 2013]
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Conclusion and Future Work

e The WENO CT methods have been successfully used to solve 2D /3D
ideal MHD problems.

e Tt is high-order and efficient. (E.g. vs 3"%-order unsplit FV code)

® There is evidence that a high-order scheme can obtain some structure
with fewer grid points.

® Future works include the extension to the AMR and positivity
preserving.

Thank youl!
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