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 Introduction to pressure sensors

 Conventional pressure sensors and challenges in harsh 
environments

 Discharge-based pressure sensors

 Description of model

 Microplasmas in pressure sensors

 Microplasma sustained in Ar

 Current vs. membrane deflection (external pressure)

 Differential current vs. membrane deflection

 Concluding Remarks
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MICROMACHINED PRESSURE SENSORS

MIPSE_2013

 “Micromachined pressure sensors” are used for automotive, 
biomedical and industrial applications.

 Automotive: fuel lines, exhaust gases, tires…
 Biomedical: ocular, cranial or bowel pressure.
 Industrial: etching, deposition are sensitive to operating 

pressure.

Ref:
• “Micromachined Pressure Sensors: Device, Interface Circuits, and Performance 
Limits”, by Y. B. Gainchandani et al.

“A noncontact intraocular pressure measurement device.....”, 
K. H. Kim et al, J. Micromech. Microeng., 22, 2012.
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MICROMACHINED 
PRESSURE SENSOR

 Microscale pressure sensors (100’s 
μm) are based on deflection of a 
membrane. 
 Piezoresistive materials 

(membrane) change resistance as 
deformed by pressure.  

 Capacitance between electrodes 
changes as the membrane is 
deflected by pressure.  

 Harsh environments (eg., oil 
borehole) are challenging:
 High temperature (> 100 ºC). 
 high pressure ( 50-100 Mpa, 1 Mpa
≈ 9.87 atm.). 

 Tight constraints for device 
volume. 
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Ref:
• www.zfm.ethz.ch/alumni/lang/page21.htm
• www.sensata.com/download/ipt_tech-note_1.pdf

Piezoresistive method

Capacitive method



 Microplasma-based pressure 
sensors are structurally simple.

 External pressure deflects the 
diaphragm and changes the inter-
electrode spacing, which 
redistributes the current to each of 
the cathodes.

 λmfp, E/N can be controlled to 
optimize the current distribution. 

 Potential advantages in harsh 
environments:
 Immune to high external 

temperature.
 Large inherent signal (relatively 

simple interface circuits).
 Small size (10’s μm). 
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Ref: S. Wright and Y.B. Gianchandani, "Discharge-Based Pressure Sensors for 
High Temperature Applications Using Three-Dimensional and Planar 
Microstructures," Journal of Microelectromechanical Systems, 18(3), pp. 736-743, 
June 2009 

MICROPLASMA SENSOR



University of Michigan
Institute for Plasma Science & Engr.MIPSE_2013

 Two cathode microdischarge-based 
pressure sensor:
 Cathode 1 (K1) adjacent to anode 

(A).
 Cathode 2 (K2) below anode (A).
 Microplasma initiated between A 

and two competing cathodes (K1, 
K2).

 A diaphragm attached to one 
electrode is deflected by external 
pressure.

 The changing inter-electrode 
spacing redistributes current to 
two competing cathodes.

 Modeling will improve fundamental 
understanding and provide design 
rules.

MICROPLASMA SENSOR

Ref:
• “A Microdischarge-Based Monolothic Pressure Sensor” by Y. B. Gainchandani et al.



MODEL:
nonPDPSIM

 2-unstructured 
mesh with 
spatial dynamic 
range of 104.

 Fully implicit 
plasma transport.

 Time slicing 
algorithms 
between plasma 
and fluid 
timescales.
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Radiation Transport

Circuit Model

Plasma Hydrodynamics
Poisson’s Equation

Gas Phase Plasma

Liquid Phase Plasma

Bulk Electron Energy
Transport

Kinetic “Beam”
Electron Transport 

Neutral Transport
Navier-Stokes

Neutral and Plasma
Chemistry 

Surface Chemistry
and Charging

Ion Monte Carlo
Simulation 
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MODELING PLATFORM: nonPDPSIM

 Poisson’s equation:

 Transport of charged and neutral species:

 Surface Charge:

 Electron Temperature (transport coefficient obtained from 
Boltzmann’s equation)

 Radiation transport and photoionization: 
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SECONDARY ELECTRONS FROM SURFACES

 Using a beam-bulk formulation, 
an electron Monte Carlo 
Simulation is used to follow 
trajectories of secondary 
electrons from surfaces. 

 Structured EMCS mesh 
overlyed onto unstructured 
fluid mesh – E-fields 
interpolated onto mesh.

 Pseudo-particles are launched 
from sites on surfaces for 
emission produced by

 Ion bombardment
 Photon fluxes
 Electric field enhanced 

thermionic emission.
MIPSE_2013
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 Three electrodes (two cathode) 
structure:
 Inter-electrode spacing:   A-

K2,  A-K1 = 10 μm.
 K1, K2: grounded, A: 400 V. 
 Ballast resistor: 100 Ω (K1, 

K2) and 500 Ω (A).
 Discharge initiated with 

emission current of 10-2 A-
cm-2 for 10 ns at cathode 
corner.

 1 atm Ar (Ar, Ar(4s,4p), Ar+, 
Ar2

+, Ar2* and electrons).

MIPSE_2013

MODEL GEOMETRY

 X/Y=0.5
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 Three electrodes (two 
cathodes) pressure 
sensor structure:
 A-K1 = 10 μm.
 Gap spacing (A-K2) 

reduced by external 
pressure.

 A-K2: 10 – 7 μm. (0 –
25 MPa external 
pressure)

 Chamber Pressure: 
760 – 919 Torr Ar.

MIPSE_2013

 X/Y=0.5

MODEL GEOMETRY

10 μm, 760 Torr

9 μm, 806 Torr

8 μm, 859 Torr

7 μm, 919 Torr
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 Avalanche between edges of 
cathodes and anode produces a 
conductive plasma within 10 ns.  

 After avalanche, plasma shields 
out E-field and reduces E/N, Te, Se.

 Conductive plasma transfers 
anode potential to cathodes. Te
and intense ionization peak at K2
and A-K1.

 IK2 produced by plasma between 
A-K2 sustained by K2.

 Increasing [e] at A-K2 reduces E/N, 
Te and Se, which reduces [e].

 E/N, Te and Se then rebound to 
produce high density [e].  A self-
pulsing IK2 is then produced.

MICROPLASMA 
DYNAMICS: [e]

MIPSE_2013

 Inter-electrode spacing: A-K2, A-K1=10 μm.
 A: 400 V, K: 0 V , ΔV = 40 V (Contours).
 760 Torr Ar.



University of Michigan
Institute for Plasma Science & Engr.MIN MAX

 Due to charge separation, 
high voltage drop at A-K1
trigger a bullet-like 
ionization wave (IW).

 IW propagates along K1
producing current pulses 
(IK1).

 A striation from A to K1 is 
due to the repetitive bullet-
like IW.  

 Ionization source Ssec at 
cathode sheaths is 
comparable with Se from 
bulk plasma.

MICROPLASMA 
DYNAMICS: [Te]

MIPSE_2013

 Inter-electrode spacing: A-K2, A-K1=10 μm.
 A: 400 V, K: 0 V , ΔV = 40 V (Contours).
 760 Torr Ar.
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MICROPLASMA DYNAMICS: [Se], [Ssec]

 Inter-electrode spacing: A-K2, A-K1=10 μm.
 A: 400 V, K: 0 V , ΔV = 40 V (Contours).
 760 Torr Ar.
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MICROPLASMA CURRENT ON CATHODES

 Gap (A-K2) spacing: 
10-7 μm.

 A: 400 V, K: 0 V.
 760-919 Torr Ar.
 Self-pulsing results 

in high frequency 
oscillation in IK1 and 
IK2.

 Averaged IK2+IK1 ≈ 
constant.

 Averaged IK2-IK1
decreases with 
deflection (from 10 
– 8 μm). 

10 μm, 760 Torr 9 μm, 806 Torr

8 μm, 859 Torr
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7 μm, 919 Torr
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 Gap (A-K2) spacing: 10-7 
μm.

 A: 400 V, K: 0 V.
 760-919 Torr Ar.
 Averaged IK2+IK1 ≈ const.
 8 – 10 μm 
 Averaged IK2-IK1

decreases with 
deflection. 

 Differential current 
(K2+K1)/(K2–K1) linearly 
increases with 
deflection (external 
pressure). 

 Operating regime (8-10 μm 
deflection or 0-20 Mpa)

MICROPLASMA DIFFERENTIAL CURRENT
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 Three electrodes (two anode) 
structure:
 Inter-electrode spacing: K-A1, 

K-A2=10 μm.
 A1, A2: grounded, K: -400 V. 
 Ballast resistor: 100 Ω (A1, A2) 

and 500 Ω (K).
 Discharge initiated with 

emission current of 10-2 A-cm-2

for 10 ns at cathode corner.
 1 atm Ar.

MIPSE_2013

MODEL GEOMETRY II

 X/Y=0.5
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 Avalanche between edges 
of cathode and anodes 
produces a conductive 
microplasma at K-A2 within 
10 ns.  

 After avalanche, plasma 
shields out E-field and 
reduces E/N, Te, Se.

 Conductive plasma 
transfers A2 potential to 
cathode. Te and intense 
ionization peak at K.

MICROPLASMA 
DYNAMICS: [e]

MIPSE_2013

 Inter-electrode spacing: K-A2, K-A1=10 μm.
 A: 0 V, K: -400 V , ΔV = 40 V (Contours).
 760 Torr Ar.
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 A large IA2 (~0.5 A) produced 
by plasma between K-A2
sustained by K.

 A small IA1(~0.5 mA) produced 
by electron transport from 
plasma at K-A2. 

 3 orders of magnitude 
difference in current 
collection – differential 
current method is challenged.

 Ionization source Ssec at 
cathodes sheath is 
comparable with Se from bulk 
plasma.

MICROPLASMA 
DYNAMICS: [Te]

MIPSE_2013

 Inter-electrode spacing: K-A2, K-A1=10 μm.
 A: 0 V, K: -400 V , ΔV = 40 V (Contours).
 760 Torr Ar.
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MICROPLASMA DYNAMICS: [Se], [Ssec]

 Inter-electrode spacing: K-A2, K-A1=10 μm.
 A: 0 V, K: -400 V , ΔV = 40 V (Contours).
 760 Torr Ar.



CONCLUDING REMARKS

 Plasma behavior in a microdischarge based pressure sensor is 
computationally investigated . 

 In two cathode structure, after electron avalanche and 
microplasma generated at A-K2, conductive plasma transfers 
anode voltage to cathodes creating a high voltage drop and 
intense ionization at K2 and A-K1. 

 IK2 produced by self-pulsing plasma at A-K2 sustained by K2. 
 A repetitive ionization wave propagating from A to K1 results in a 

striation on K1.
 The striation produces a high frequency current pulses on 

cathodes.  
 Deferential current (K2+K1)/(K2–K1) linearly increases with 

deflection in 10-8 μm deflection regime (0 – 20 MPa external 
pressure).
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