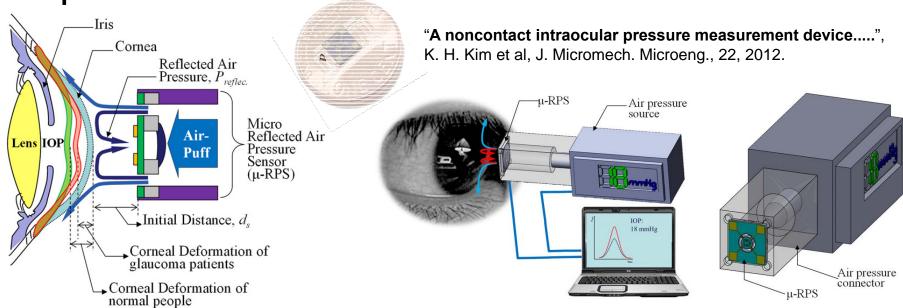
A MICRODISCHARGE BASED PRESURE SENSOR*

Jun-Chieh Wang^{a)}, Zhongmin Xiong^{a)}, Christine Eun^{a)}, Xin Luo^{a)}, Yogesh Gianchandani^{a)} and Mark J. Kushner^{a)}

^{a)}University of Michigan, Ann Arbor, MI 48109 USA junchwan@umich.edu, zxiong@umich.edu, eunc@eecs.umich.edu, xinluo@umich.edu, yogesh@umich.edu, mjkush@umich.edu

4th ANNUAL MIPSE GRADUATE STUDENT SYMPOSIUM 25 Sept. 2013, Ann Arbor, MI

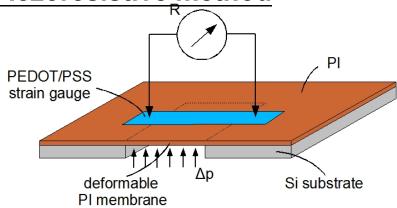
* Work supported by Advanced Energy Consortium

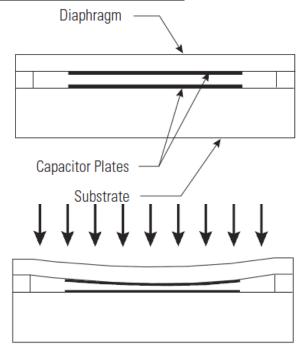

AGENDA

- Introduction to pressure sensors
 - Conventional pressure sensors and challenges in harsh environments
 - Discharge-based pressure sensors
- Description of model
- Microplasmas in pressure sensors
 - Microplasma sustained in Ar
 - Current vs. membrane deflection (external pressure)
 - Differential current vs. membrane deflection
- Concluding Remarks

MICROMACHINED PRESSURE SENSORS

- "Micromachined pressure sensors" are used for automotive, biomedical and industrial applications.
 - Automotive: fuel lines, exhaust gases, tires...
 - Biomedical: ocular, cranial or bowel pressure.

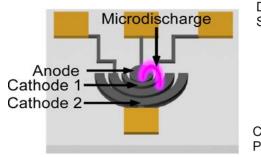

 Industrial: etching, deposition are sensitive to operating pressure.

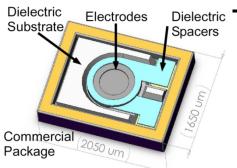

Ref:

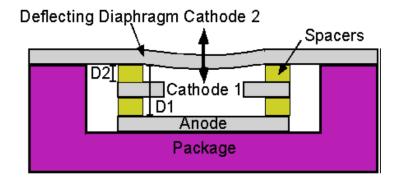
• "Micromachined Pressure Sensors: Device, Interface Circuits, and Performance Limits", by Y. B. Gainchandani et al.

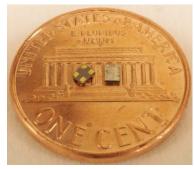
Piezoresistive method

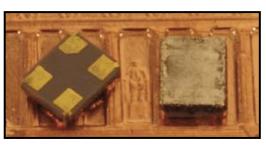
Capacitive method

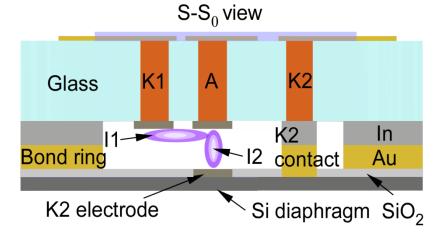

Ref:


- www.zfm.ethz.ch/alumni/lang/page21.htm
- www.sensata.com/download/ipt_tech-note_1.pdf


MICROMACHINED PRESSURE SENSOR


- Microscale pressure sensors (100's µm) are based on deflection of a membrane.
 - Piezoresistive materials (membrane) change resistance as deformed by pressure.
 - Capacitance between electrodes changes as the membrane is deflected by pressure.
- Harsh environments (eg., oil borehole) are challenging:
 - High temperature (> 100 °C).
 - high pressure (50-100 Mpa, 1 Mpa ≈ 9.87 atm.).
 - Tight constraints for device volume.


MICROPLASMA SENSOR

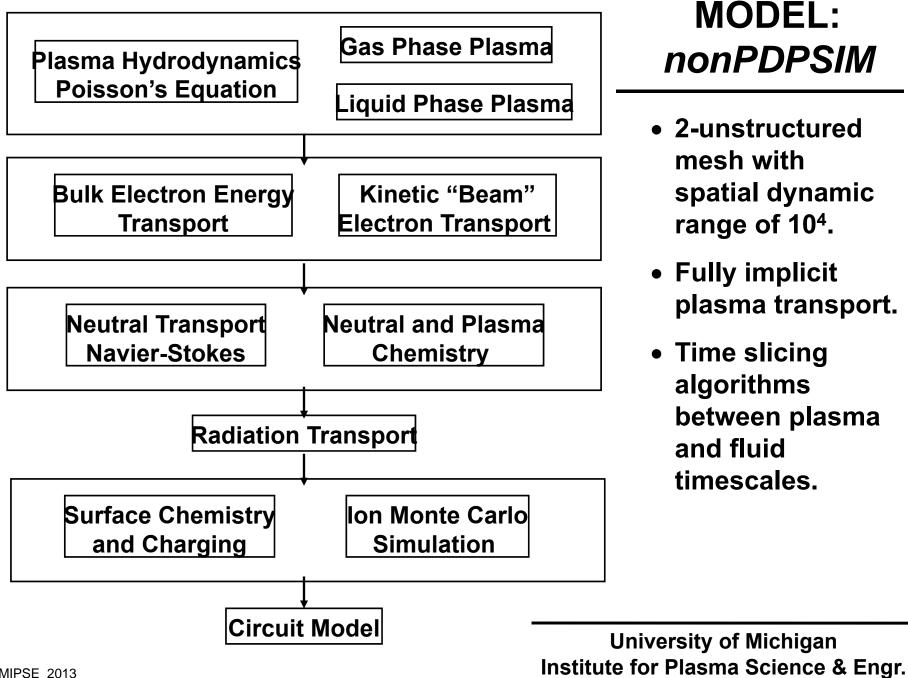

Ref: S. Wright and Y.B. Gianchandani, "Discharge-Based Pressure Sensors for High Temperature Applications Using Three-Dimensional and Planar Microstructures," *Journal of Microelectromechanical Systems*, 18(3), pp. 736-743, June 2009

- Microplasma-based pressure sensors are structurally simple.
- External pressure deflects the diaphragm and changes the interelectrode spacing, which redistributes the current to each of the cathodes.
- λ_{mfp}, E/N can be controlled to optimize the current distribution.
- Potential advantages in harsh environments:
 - Immune to high external temperature.
 - Large inherent signal (relatively simple interface circuits).
 - Small size (10's μm).

University of Michigan Institute for Plasma Science & Engr.

MIPSE_2013

Glass K1 Contact pads K2 SiO₂ Discharge electrodes



MICROPLASMA SENSOR

- Two cathode microdischarge-based pressure sensor:
 - Cathode 1 (K₁) adjacent to anode (A).
 - Cathode 2 (K₂) below anode (A).
 - Microplasma initiated between A and two competing cathodes (K₁, K₂).
 - A diaphragm attached to one electrode is deflected by external pressure.
 - The changing inter-electrode spacing redistributes current to two competing cathodes.
- Modeling will improve fundamental understanding and provide design rules.

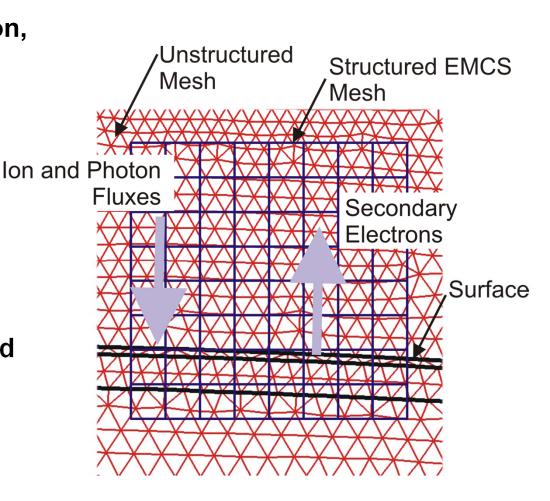
Ref:

• "A Microdischarge-Based Monolothic Pressure Sensor" by Y. B. Gainchandani et al.

MODELING PLATFORM: nonPDPSIM

- Poisson's equation: $\nabla \cdot (\varepsilon \nabla \Phi) = -(\sum_{i} q_{i} N_{j} + \rho_{s})$
- Transport of charged and neutral species: $\frac{\partial N_j}{\partial t} = -\nabla \cdot \vec{\Gamma}_j + S_j$
- Surface Charge: $\frac{\partial \rho_s}{\partial t} = \left[\sum_i q_j \left(-\nabla \cdot \vec{\Gamma}_j + S_j \right) \nabla \cdot \left(\sigma (-\nabla \Phi) \right) \right]$ material
- Electron Temperature (transport coefficient obtained from **Boltzmann's equation)**

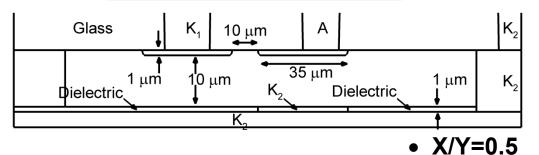
$$\frac{\partial (n_e \varepsilon)}{\partial t} = \vec{j} \cdot \vec{E} - n_e \sum_i \Delta \varepsilon_i K_i N_i - \nabla \cdot \left(\frac{5}{2} \vec{\phi}_e \varepsilon - \overline{\vec{\kappa}} (T_e) \cdot \nabla T_e \right)$$

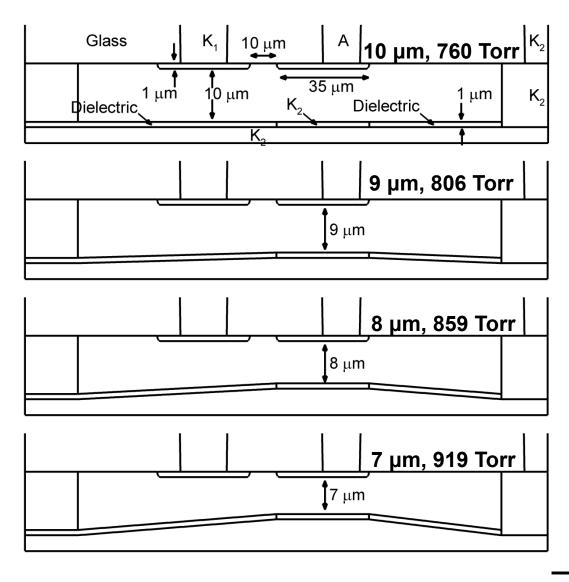

Radiation transport and photoionization:

$$S_{m}(\vec{r}_{i}) = N_{m}(\vec{r}_{i}) \cdot \exp\left(-\sum_{l} \int_{\vec{r}_{j}'}^{\vec{r}_{i}} \sigma_{lk} N_{l}(\vec{r}_{j}') d\vec{r}_{j}'\right)$$

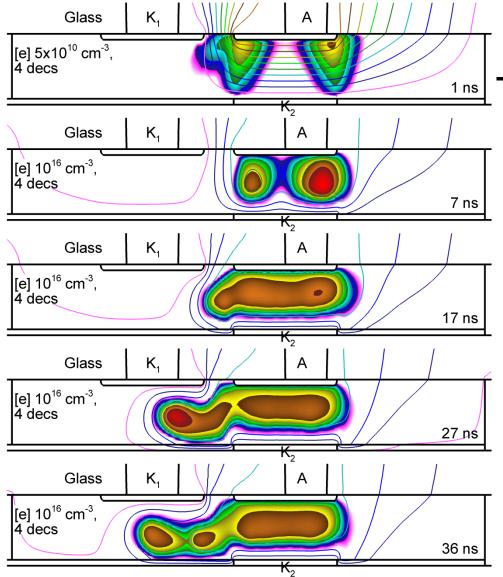
$$\sum_{k} \sigma_{mk} A_{k} \int N_{k}(\vec{r}_{j}') G_{k}(\vec{r}_{j}', \vec{r}_{i}) d^{3}\vec{r}_{j}' \qquad G(\vec{r}_{j}', \vec{r}_{i}) = \frac{\exp\left(-\sum_{l} \int_{\vec{r}_{j}'}^{\vec{r}_{i}} \sigma_{lk} N_{l}(\vec{r}_{j}') d\vec{r}_{j}'\right)}{4\pi |\vec{r}_{j}' - \vec{r}_{i}|^{2}}$$

SECONDARY ELECTRONS FROM SURFACES


- Using a beam-bulk formulation, an electron Monte Carlo
 Simulation is used to follow trajectories of secondary electrons from surfaces.
- Structured EMCS mesh overlyed onto unstructured fluid mesh – E-fields interpolated onto mesh.
- Pseudo-particles are launched from sites on surfaces for emission produced by
 - Ion bombardment
 - Photon fluxes
 - Electric field enhanced thermionic emission.

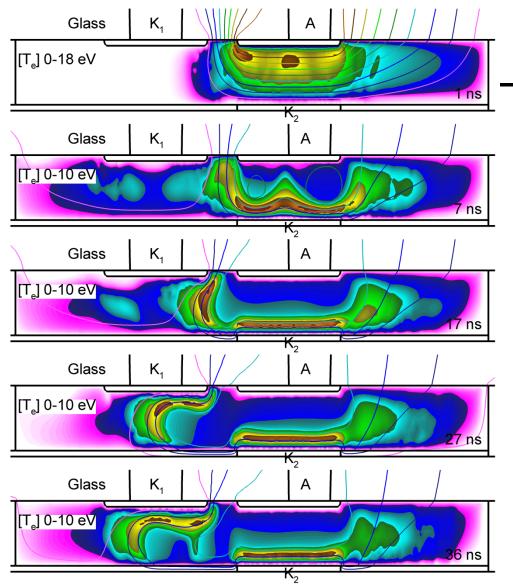

Glass K,

MODEL GEOMETRY


- Three electrodes (two cathode) structure:
 - Inter-electrode spacing: A K₂, A-K₁ = 10 μm.
 - K₁, K₂: grounded, A: 400 V.
 - Ballast resistor: 100 Ω (K₁, K₂) and 500 Ω (A).
 - Discharge initiated with emission current of 10⁻² Acm⁻² for 10 ns at cathode corner.
 - 1 atm Ar (Ar, Ar(4s,4p), Ar⁺, Ar₂⁺, Ar₂^{*} and electrons).

MODEL GEOMETRY

- Three electrodes (two cathodes) pressure sensor structure:
 - A- K_1 = 10 μ m.
 - Gap spacing (A-K₂) reduced by external pressure.
 - A-K₂: 10 7 μm. (0 –
 25 MPa external pressure)
 - Chamber Pressure: 760 919 Torr Ar.
- X/Y=0.5


• Inter-electrode spacing: A-K₂ A-K₁=10 μm.

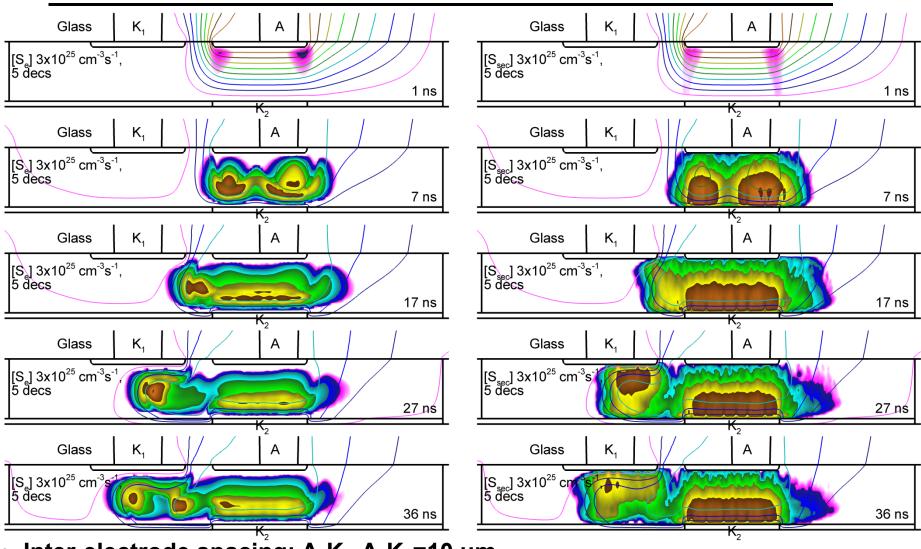
MAX

- A: 400 V, K: 0 V , ΔV = 40 V (Contours).
- 760 Torr Ar.

MICROPLASMA DYNAMICS: [e]

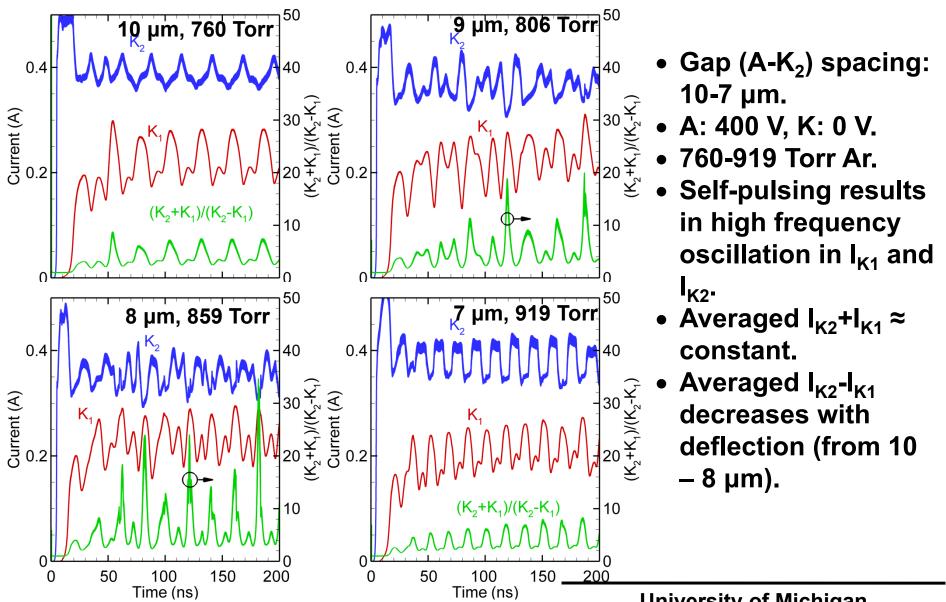
- Avalanche between edges of cathodes and anode produces a conductive plasma within 10 ns.
- After avalanche, plasma shields out E-field and reduces E/N, T_e, S_e.
- Conductive plasma transfers anode potential to cathodes. T_e and intense ionization peak at K_2 and A- K_1 .
- I_{K2} produced by plasma between
 A-K₂ sustained by K₂.
- Increasing [e] at A-K₂ reduces E/N,
 T_e and S_e, which reduces [e].
- E/N, T_e and S_e then rebound to produce high density [e]. A selfpulsing I_{K2} is then produced.

• Inter-electrode spacing: A-K₂, A-K₁=10 μm.

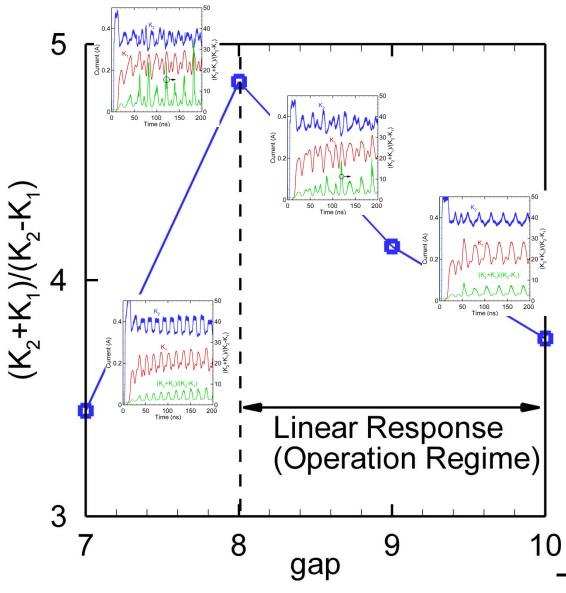

MAX

- A: 400 V, K: 0 V , ΔV = 40 V (Contours).
- 760 Torr Ar.

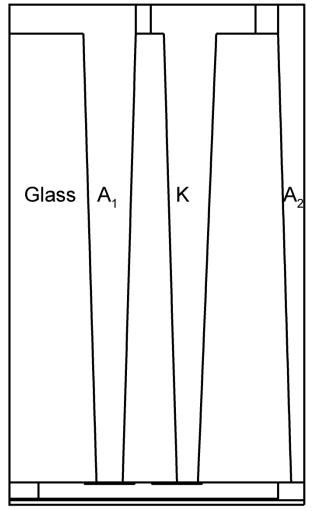
MICROPLASMA DYNAMICS: [T_a]


- Due to charge separation, high voltage drop at A-K₁ trigger a bullet-like ionization wave (IW).
- IW propagates along K₁ producing current pulses (I_{K1}).
- A striation from A to K₁ is due to the repetitive bulletlike IW.
- Ionization source S_{sec} at cathode sheaths is comparable with S_e from bulk plasma.

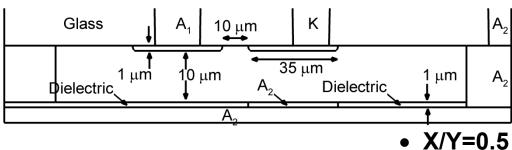
MICROPLASMA DYNAMICS: [Se], [Sec]

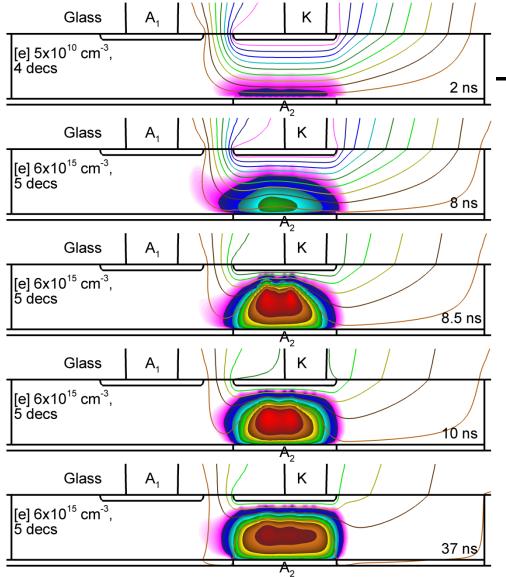


- Inter-electrode spacing: A-K₂, A-K₁=10 μm.
- A: 400 V, K: 0 V , ΔV = 40 V (Contours).
- 760 Torr Ar.


MICROPLASMA CURRENT ON CATHODES

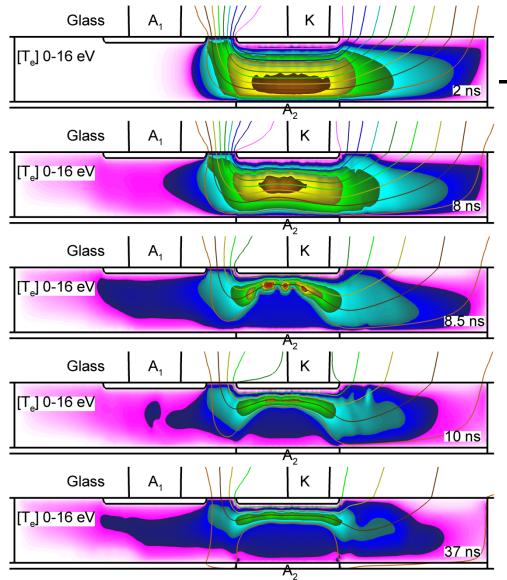
MICROPLASMA DIFFERENTIAL CURRENT




- Gap (A-K₂) spacing: 10-7 μm.
- A: 400 V, K: 0 V.
- 760-919 Torr Ar.
- Averaged I_{K2}+I_{K1} ≈ const.
- 8 10 µm
 - Averaged I_{K2}-I_{K1} decreases with deflection.
 - Differential current (K₂+K₁)/(K₂-K₁) linearly increases with deflection (external pressure).
- Operating regime (8-10 μm deflection or 0-20 Mpa)

MODEL GEOMETRY II

- Three electrodes (two anode) structure:
 - Inter-electrode spacing: K-A₁,
 K-A₂=10 μm.
 - A₁, A₂: grounded, K: -400 V.
 - Ballast resistor: 100 Ω (A₁, A₂) and 500 Ω (K).
 - Discharge initiated with emission current of 10⁻² A-cm⁻² for 10 ns at cathode corner.
 - 1 atm Ar.



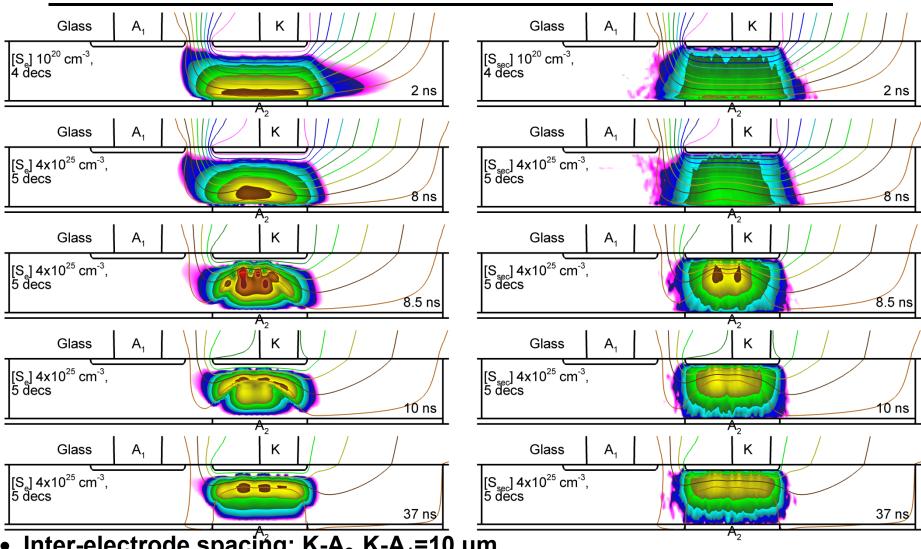
MICROPLASMA DYNAMICS: [e]

- Avalanche between edges of cathode and anodes produces a conductive microplasma at K-A₂ within 10 ns.
- After avalanche, plasma shields out E-field and reduces E/N, T_e, S_e.
- Conductive plasma transfers A₂ potential to cathode. T_e and intense ionization peak at K.
- Inter-electrode spacing: K-A₂ K-A₁=10 μm.

MAX

- A: 0 V, K: -400 V , ΔV = 40 V (Contours).
- 760 Torr Ar.

• Inter-electrode spacing: K-A₂ K-A₁=10 μm.


MAX

- A: 0 V, K: -400 V , ΔV = 40 V (Contours).
- 760 Torr Ar.

MICROPLASMA DYNAMICS: [T_a]

- A large I_{A2} (~0.5 A) produced by plasma between K-A₂ sustained by K.
- A small I_{A1}(~0.5 mA) produced by electron transport from plasma at K-A_{2.}
- 3 orders of magnitude difference in current collection – differential current method is challenged.
- Ionization source S_{sec} at cathodes sheath is comparable with S_e from bulk plasma.

MICROPLASMA DYNAMICS: [Se], [Sec]

- Inter-electrode spacing: K-A₂, K-A₁=10 μm.
- A: 0 V, K: -400 V , ΔV = 40 V (Contours).
- 760 Torr Ar.

CONCLUDING REMARKS

- Plasma behavior in a microdischarge based pressure sensor is computationally investigated.
- In two cathode structure, after electron avalanche and microplasma generated at A-K₂, conductive plasma transfers anode voltage to cathodes creating a high voltage drop and intense ionization at K₂ and A-K₁.
- I_{K2} produced by self-pulsing plasma at A-K₂ sustained by K₂.
- A repetitive ionization wave propagating from A to K₁ results in a striation on K₁.
- The striation produces a high frequency current pulses on cathodes.
- Deferential current $(K_2+K_1)/(K_2-K_1)$ linearly increases with deflection in 10-8 µm deflection regime (0 20 MPa external pressure).