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Abstract 

Formulation 
Quasi-classical Hamiltonian of an N electron atom [2]: 

𝑯𝑸𝑪 = 𝑯𝟎 + 𝑽𝑯 + 𝑽𝑷  
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Results  

• Effect of momentum dependent potential on the potential 

energy landscape is illustrated with Hydrogen atom 

I. Ground State Energy 

• Similar correlation for some other ground state atoms 

Conclusions & Future Work 
• Correlation between phase-space parameters identified 

• Studying the correlation resulted in identifying a pattern 

w.r.t. atomic number 

•By extracting the pattern information, ground state energy 

of Sulphur and Fluorine were predicted within 0.03% of 

corresponding HF value 

•Much reduced cost compared to Hartree-Fock method 

•To understand the physical reason for correlation and to 

identify accurate functional form  

•To understand the physical reason for the pattern in 

correlation w.r.t. atomic number 

Atomic and molecular data calculations can be 

computationally very demanding as the complexity of the 

atom or molecule increases. In a strongly coupled plasma 

environment the interactions are of many-particle nature and 

cannot be approximated as simpler binary events [1]. A full 

quantum mechanical calculation would be prohibitive due to 

the vast number of particles involved. An alternative is to 

treat the quantum mechanical interactions in a classical 

framework using effective potentials as in the Fermion 

Molecular Dynamics method which incorporates the 

Heisenberg and Pauli principles through corresponding 

momentum dependent potentials [2]. This method has found 

success in atomic and molecular physics applications [3]. 

The limitation has been capturing the correct empirical 

quantities in the potentials which decide the extent of 

exclusion in phase space and are crucial for obtaining 

reasonable results. We present our approach of training these 

phase space parameters and calculation of ground state 

energies of some atoms. The computed energies match very 

well with Hartree-Fock (HF) calculations. The model has 

been extended to study excited states of Hydrogen atom. 
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Correlated Phase Space parameters 

𝜟𝑯𝑭 % = 
𝑬 − 𝑬𝑯𝑭
𝑬𝑯𝑭

 

•Search in parameter space  

search along curve: 

EFFICIENT 

• Correlation between the parameters that resulted in ground 

state atomic energies with < 10% deviation from HF 

•Correlated values – motivation 

for physical reason 

 

 

DHF(%) 

a : 0.045% 

b : 0.04% 

c : 0.039% 

d : 0.036% 

e : 0.064% 

•Min. deviation from 

HF value  

•Accurate than those 

reported 

•Much reduced 

computational cost 

•Formulation simpler 

than HF 

 

 
• Pattern in correlation with respect to Atomic number: 

Parabolic form  𝜺𝑷 = 𝑨 𝜺𝑯
𝟐 + 𝑩 𝜺𝑯 + 𝐂 

• Coefficients extracted for intermediate Z 

4th degree 

polynomial 

fit 

Data 

Predictability 

𝟎. 𝟎𝟎𝟕𝟔% 

𝟎. 𝟎𝟐𝟔% 

• Net potential acquires the form of an 

asymmetric well with depth and position 

of the minimum altered by the momentum 

𝑩(𝒁) 

𝑨(𝒁) 𝑪(𝒁) 

𝑭:  𝜺𝑷 = −𝟒𝟕. 𝟓𝟏𝜺𝑯
𝟐 + 𝟗𝟖. 𝟕𝟗𝜺𝑯 − 𝟒𝟗. 𝟒 𝑺:  𝜺𝑷 = −𝟓. 𝟐𝟗𝜺𝑯

𝟐 + 𝟖. 𝟗𝟕𝜺𝑯 − 𝟏. 𝟓 

• Curves computed for F 

and S using the 

extracted coefficients 

• Search along the curves 

 parameters that 

resulted in ground state 

energy with <0.03% 

deviation from HF  

II. Excited State Energy 
• Model extended to excited 

sates of Hydrogen – energy 

values in reasonable 

agreement with Bohr 

model 
• Relationship between 

Heisenberg parameter and 

principal quantum number 

found to be almost linear 
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