

Minor ion heating by low-frequency Alfvén waves: Thermal motion vs. non-thermal motion

Chuanfei Dong

Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

1. Introduction

- To study minor ion heating process in the solar wind and solar corona;
- To address possible heating mechanisms between wave- particle interaction;
- To investigate nonresonant genuine, pseudo and stochastic heating of ions by low-frequency Alfvén waves via analytic solution & particle simulation.

Pseudo heating

- Kinetic process;
- function (maintain Maxwellian shape);
- Effective broadening under Alfvén wave spectra;
- Reversible;
- Heating efficiency: depends on wave amplitude

Nonresonant heating

- Kinetic process;
- Deformation of distribution Initial pitch-angle scattering of newly created ions or violation of the first adiabatic invariant;
 - Dissipation of wave fields;
 - Irreversible;
 - Heating efficiency: depends on wave amplitude
- No threshold requirement
 No threshold requirement

Stochastic heating

- Kinetic process;
- Chaotic particle motions when satisfying the threshold condition; phase hole forms.
- Dissipation of wave fields;
- Irreversible;
- Heating efficiency: independent of wave amplitude
- Threshold: $k_x v_z B_w / (B_0 \Omega_c)$ ~0.1

2. Analytic Theory

Wave Magnetic Perturbation

$$\delta \mathbf{B}_{w}^{lnr} = \sum_{k} B_{k} \cos \phi_{k} \mathbf{i}_{y},$$
 linearly polarized magnetic perturbations

$$\delta \mathbf{B}_{w}^{cir} = \sum_{k} B_{k} (\cos \phi_{k} \mathbf{i}_{x} - \sin \phi_{k} \mathbf{i}_{y}),$$
 circularly polarized magnetic perturbations

Nonresonant Genuine Heating Temperature (linearly polarized case)

$$T_{linx}^R = T_{liny}^R = T_{lin}^R$$

$$= \frac{m_p}{2k_B\sqrt{\pi}v_{th}} \int_{-\infty}^{\infty} |v_{\perp} - U_{\perp}|^2$$

$$\simeq T_0 \left(1 + \frac{m_i}{2m_p} \frac{\delta B_w^2}{\beta_p B_0^2}\right),$$

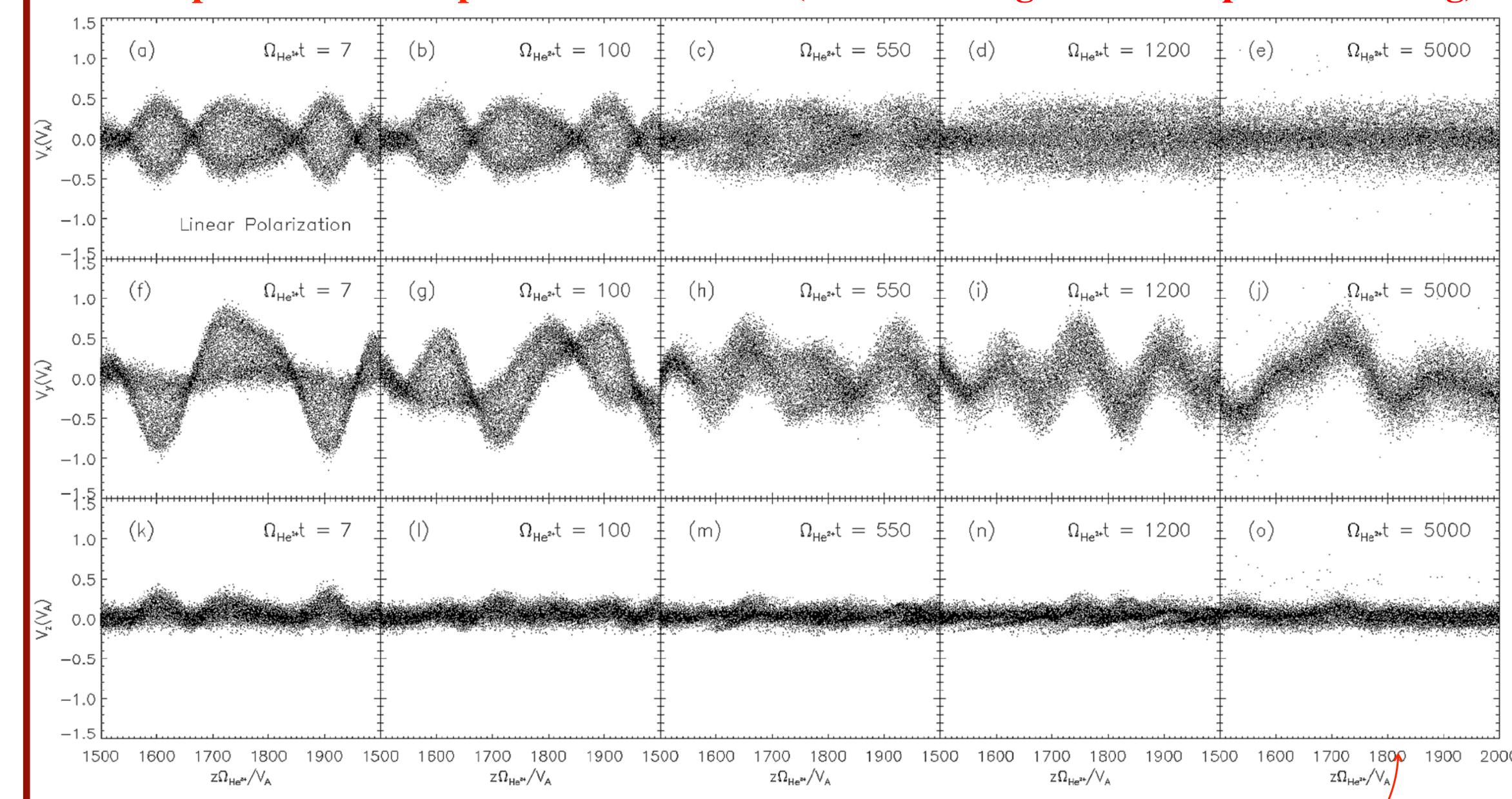
$$\begin{split} & t_{linx} = T_{liny} = T_{liny} = \\ & = \frac{m_p}{2k_B\sqrt{\pi}v_{th}} \int_{-\infty}^{\infty} |v_{\perp} - U_{\perp}|^2 e^{-\left[\frac{v_{\parallel}(0)}{v_{th}}\right]^2} dv_{\parallel}(0) \\ & = \frac{m_p}{2k_B\sqrt{\pi}v_{th}} \int_{-\infty}^{\infty} |v_{\perp} - U_{\perp}|^2 e^{-\left[\frac{v_{\parallel}(0)}{v_{th}}\right]^2} dv_{\parallel}(0) \\ & \simeq T_0 \left(1 + \frac{m_i}{2m_p} \frac{\delta B_w^2}{\beta_p B_0^2}\right), \\ & \simeq T_0 \left(1 + \frac{3}{8} \frac{m_i}{m_p} \frac{\delta B_w^4}{\beta_p B_0^4}\right). \end{split}$$

Nonresonant Genuine + Pseudo Heating Temperature

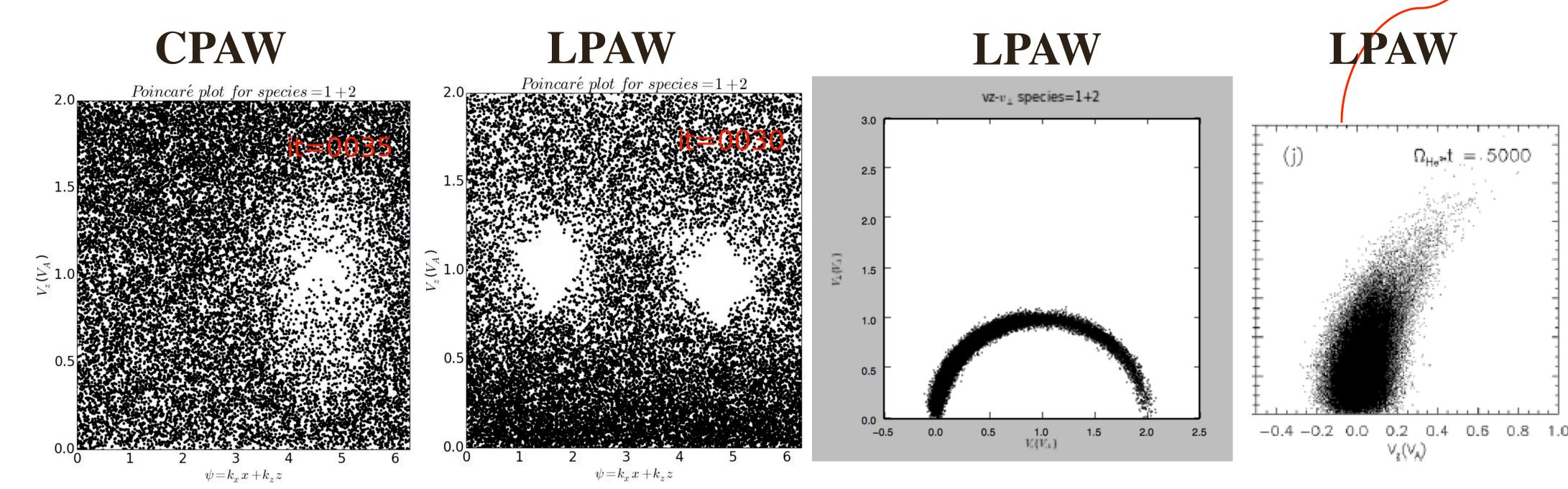
(linearly polarized case)

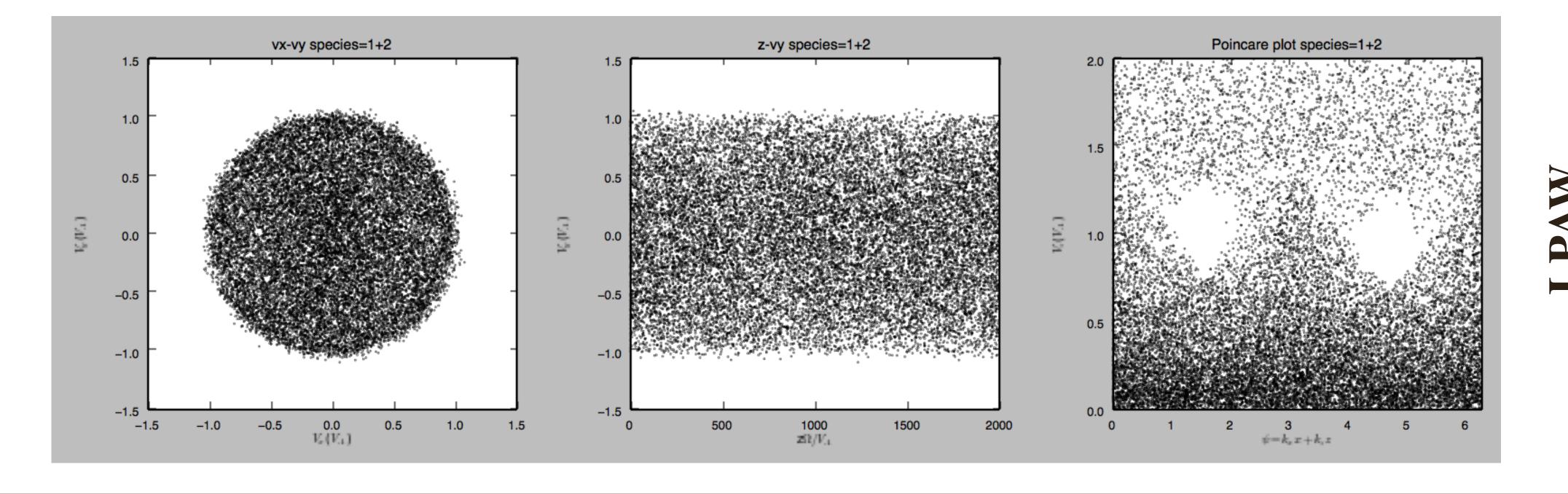
$$T_{linx}^{A+R} \simeq T_0 \left(1 + \frac{m_i}{2m_p} \frac{\delta B_w^2}{\beta_p B_0^2} \right),$$

$$T_{liny}^{A+R} \simeq T_0 \left(1 + \frac{3}{2\beta_p} \frac{m_i}{m_p} \frac{\delta B_w^2}{B_0^2} \right).$$


non-thermal speed thermal speed $v_{th}^{tot} = \sqrt{v_{th}^{R}}^2 + \xi^2$

References


- C. F. Dong & N. Singh, Phys. Plasma 20, 012121 (2013);
- C. F. Dong, Phys. Plasma 21, 022302 (2014);
- C. S. Wu & P. H. Yoon, Phys. Rev. Lett. 99, 075001 (2007);
- C. F. Dong & C. S. Paty, Phys. Plasma 18, 030702 (2011);
- C. B. Wang et al, Phys. Rev. Lett. 96, 125001 (2006);
- Z. H. Guo, C. Crabtree, and L. Chen, Phys. Plasma 15, 032311 (2008);
- B. Chandran, B. Li, B. Rogers, E. Quataert, & K. Germaschewski, Astrophys. J., 720, 503 (2010)


3. Test Particle Simulation Results & Discussions

Scatter plots of the test particles for LPAW (nonresonant genuine and pseudo heating)

Scatter plots and the Poincaré plots of the test particles (stochastic heating)

4. Conclusions

- The pseduoheating is associated with wave fluctuations that contribute to the nonthermal broadening of VDFs due to the wave field forces;
- Although the stochastic heating is more significant, it occurs only when certain threshold condition is satisfied, and takes much longer time than nonresonant heating. Thus, nonresonant heating may also be important in some circumstances;
- The pseduoheating can be tested for solar wind minor ions, such as alpha particles at 1 AU based on current available data from Wind and Helios spacecrafts;
- For the near solar region, in situ observations from high spatial and temporal resolution space instruments are required, such as the upcoming NASA Solar Probe Plus mission.