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ATMOSPHERIC PLASMAS 

 Plasma-Medicine 

 Reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) are produced in plasma discharges 

 ROS/RNS signal cells, optimal dose is difficult to determine [1] 

 Sanitize sensitive wounds without tissue damage [2]  

 Reduce the size of cancerous tumors. [3] 

 Greater certainty in the fundamental processes required before 

it could be used on humans − modelling is essential 

 Environmental Remediation  

 Air and surface sterilization, control of air pollutants, CO2 
sequestration have shown promising results. [4] 

 Air discharges used on pilot scale for the removal of NOx and 
SO2  from incinerator exhaust. [5] 

 Many challenges with scaling up, modeling is valuable. 
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ATMOSPHERIC PLASMAS 
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 MG Kong [et al] 

 Examples of atmospheric pressure plasmas devices 

 This type of DBD discharges below may be used to 
directly treat wounds or tumors 

 



MODEL: GLOBAL-KIN 
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 Global model (0-D) - assumes all densities are uniform 
throughout plasma volume. 

 Electron temperature: 

 

  

 

 

 Species densities: 
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GAS FLOW & APPLIED POWER  
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 Power deposition approximates 

a DBD 

 5 ns pulse  

 1 kHz pulse repetition freq. 

 Flow gas (humid air):  

 N2/O2/H2O = 78/21/1 

 CO2  3.5 x 10-2 % 

 CH4   4 x 10-4 %  

 Air flow direction, and electrode 

configuration need not be 

specified for the global model.  

 Flow produces a "residence 

time" for gas in plasma.  
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power deposition 

 

 

 

 
 



BASE CASE CONDITIONS 

 500 sccm humid air  

 25% relative humidity 

 1 kHz pulse repetition rate 

 Initial and inlet gas are the 

same composition – all 

species flow out. 

 Te  4.5 eV during pulse 

 Tgas increases during pulses 

due to joule heating – 

decreases between pulses due 

to conduction, flow.  
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 Te, Tgas at 1 kHz. 

 

 

 

 
 



REACTIVE OXYGEN SPECIES (ROS) 
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 Electron impact 

dissociation / attachment 

of O2, H2O during pulse 

produces O, OH, H, O2
- 

 Reactions between 

pulses: 

O + O2 + M → O3 + M 

H + O2 + M → HO2 + M 

OH + OH + O2 → H2O2 + O2 

 

 Gas flow (residence time, 

 = 9.6 ms) depletes 

products.  
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REACTIVE NITROGEN SPECIES (RNS) 

 

 Terminal RNS include 

nitrogen oxides (NxOy) 

and acids (HNOx)  

N + OH → NO + H  

O + NO + N2→ NO2 + N  

O + NO2 + M → NO3 + M  

NO + OH + M → HNO2 + M  

OH + NO2 + N2 → HNO3 + N2  

 

 RNS stabilize after about 

0.02 s (20 pulses), which 

is about 2.1 



EFFECT OF FLOW RATE - RNS 
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 Residence time  

decreases with 

increasing flow rate. 

 RNS increase with 

smaller flow rate as 

longer  enables more 

formation reactions.  

 N2O5 is an exception:  

 

 

 N2O5 is consumed by a 

NO2
- at low flow, limited 

by NO3 at high flow.  

 

NO2 + NO3 + M → N2O5 + M  

NO2
- + N2O5 →NO3

- + NO2 + NO2  



EFFECT OF FLOW RATE – ROS 
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 In absence of hydro- 

carbons, ROS are fairly 

stable and accumulate in 

discharge. 

 ROS do react with RNS: 

HO2 + NO + M → HNO3 + M 

HO2 + NO2 → HNO2 + O2   

     NO + O3 → NO2 + O2 

 

 Shorter residence times 

produce less RNS and 

so less depletion of 

ROS. 

 Control of ROS/RNS by 

varying flow rate  



HUMIDITY – RNS PRODUCTION 
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 Production of HNO2 and 

HNO3 increase with 

increasing humidity. 

NO + OH + M → HNO2 + M  

OH + NO2 + N2 → HNO3 + N2 

  

 Humidity above 10% 

does not effect RNS 

generation 

 Water impurities below 1 

ppb do not effect RNS 

generation 
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HUMIDITY – ROS PRODUCTION 

 H2O2, HO2, and OH 

increase with 

humidity – origins are 

traced to electron 

impact dissociation 

of H2O.  

 Humidity above 10% 

does not affect ROS – 

likely due to finite 

energy deposition.  

 Impurities less than 1 

ppb not important 



CONCLUDING REMARKS  

 Increased flow rates (smaller residence times) decrease 

RNS densities, except for N2O5 . 

 Increasing humidity increases production of HNO2, HNO3  

H2O2, HO2, and OH – electron impact dissociation of H2O.  

 Water impurities in dry air below 1 ppb, have a negligible 

effect on ROS and RNS. 

 Increasing humidity above 10% has a negligible effect on 

ROS and RNS  

 Future Work: 

 Expand reaction mechanism and validate by comparison to 

experiment 

 Improve functionality of Global_Kin to include interaction 

with a liquid 

 Analyze devices with a broad range of flow rates, from 

surface micro-discharges to DBDs and plasma jets. 
MIPSE 14 
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