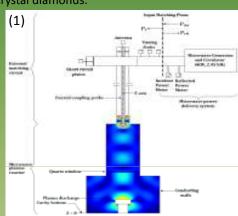
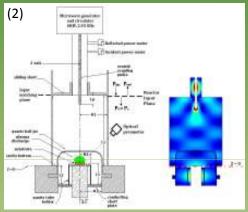
Efficient Experimental Methods That Enable Control Of High Pressure Microwave Discharges

Shreya Nada, Jing Lua, Jes Asmussena,b,


a) Michigan State University, East Lansing, MI 48824, USA;


b) Fraunhofer USA Inc., Center for Coatings and Laser Applications, East Lansing, MI 48824, USA

Introduction: Microwave Plasma-Assisted CVD method is a convenient mode of synthesizing SCDs. It is important to employ an electrically efficient process producing a stable plasma for the growth process.

Experimental Details:

The main purpose of this research is to determine microwave coupling and operational efficiencies of microwave cavity plasma reactor used commercially for the synthesis of single crystal diamonds.

Operational Strategy:

- Adjust L_o and L_s to excite reactor cavity in a hybrid TM₀₁₃/TEM₀₀₁ mode
- Once plasma is formed, adjust L_p, L_s, L1 and L2 for optimum operating conditions
- \bullet Measure $T_s,\,P_{inc},\,P_{ref},\,\eta$ with varying pressure, Z_s and L_s positions.

Important reactor variables:

1. Microwave coupling efficiency into the reactor

$$\eta = (1 - (P_w + P_{ref})/P_{inc}) \times 100\%$$

2. Overall microwave coupling efficiency into discharge

$$\eta_{\text{coup}} = (1 - (P_w + P_{\text{ref}} + P_{\text{loss}})/P_{\text{inc}}) \times 100\%$$

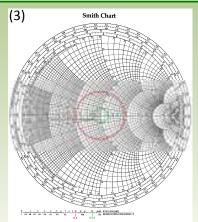
$$= (1 - Q_1/Q_0) \times 100\% \text{ (for } P_{wv} P_{\text{loss}} = 0)$$

3. Power coupled into discharge

$$\mathbf{P_{abs}} = \mathbf{P_{inc}} - \mathbf{P_{ref}} - \mathbf{P_{w}} - \mathbf{P_{loss}}$$

where, P_w: any power lost in the external matching circuit

P_{ref}: power reflected from input matching plane

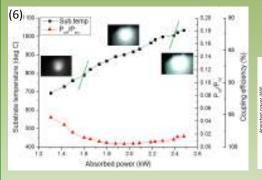

P_{inc}: incident power

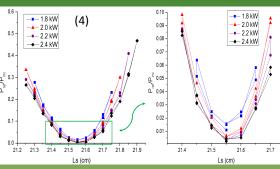
P_{loss}: microwave power losses in cavity

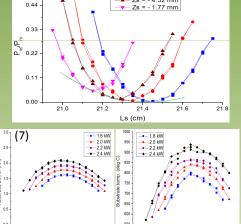
Q₀: Empty cavity quality factor

Q: discharge loaded cavity quality factor

 P_{loss} is minimized by a well maintained cavity (high Q_0) and low Q_L




Results:


MSU reactor (fig.2) [1], has an internal matching configuration eliminating large microwave coupling power losses.

(5)

- (1) Figs. 3,4 and 7 identify the "best matched" reactor position (η >98%) (green box/circle) at 180 Torr. For all SCD synthesis, $L_s = 21.55$ cm, $\eta \sim 99$ %.
- (2) Discharge boundary layer is modified when different substrate holders change L_s and hence Z_s . Fig. 5 displays the effectiveness of in situ matching. $\eta > 95\%$ at best matched positions.
- **(3)** Operational roadmap (fig.6) describes the safe and efficient operating regime of reactor. As pressure increases the plasma intensity and size increases.

2.2kW, 180T, 3%

Zs = -8.17 mm

Conclusion: Internally tunable microwave reactors reduce power and high coupling efficiencies (η >95%) are obtained over a wide pressure and power range providing flexibility in deposition conditions. This reactor is synthesizing commercial diamond with electrical efficiency of < 10 kW-h/carat [3]. The variable substrate position enables flexible process control and optimization.

References:

- [1] J. Asmussen et.al. US Patent 8,316,797 (2012) and 8,668,962 (2014)
- [2] K.W. Hemawan et al. / Diamond & Related Materials 19 (2010) 1446-1452
- [3] J. Lu et.al. Diamond and Relat. Mater. 37, 17-28 (2013)