PLASMA JET INTERACTIONS
WITH WET CELLS*

Seth A. Norberg?, Eric Johnsen®, and
Mark J. Kushner®

ADepartment of Mechanical Engineering
University of Michigan, Ann Arbor, Ml 48109, USA
norbergs@umich.edu, ejohnsen@umich.edu

b)Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml 48109, USA
mjkush@umich.edu
http://uigelz.eecs.umich.edu

2014 Michigan Institute for Plasma Science and Engineering
Ann Arbor, Ml
8 October 2014

*Work supported by DOE Fusion Energy Science and National Science Foundation


mailto:norbergs@umich.edu
mailto:ejohnsen@umich.edu
mailto:mjkush@umich.edu

PLASMA MEDICINE

e Treatment of biomedical surfaces and human tissue with

atmospheric pressure plasma jets has been shown to:

e Disinfect surfaces by killing bacteria

Sterilize medical equipment and implants
e Sterilize food and food packaging

e Induce blood coagulation

e Kill cancer cells

e Facilitate healing in chronic wounds

[1]

e Sterilize acute wounds

e In this poster, | will show the results of a 2-D model that
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Investigated the interaction of the electric field produced by
an atmospheric pressure plasma jet and wet cells and the
potential for electroporation or intracellular electro-
manipulation.
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ATMOSPHERIC PRESSURE PLASMA JETS (APPJ)

e Low-temperature non-equilibrium atmospheric pressure
plasma jets provide therapeutic and sterilizing effects through:

e Fluxes of charged and reactive species to surfaces
e lon and photon flux to cell structure
e Intracellular and surface electric fields
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BIOELECTRONICS REVIEW

e Electroporation:

e Intracellular Electro-manipulation (IEM):

Transmembrane pore formation resulting from accumulation of
electric charge at the cell membrane.

Threshold — membrane voltage drop of 0.1 —1 V over pulses of
0.1 — 10 ms with electric fields of a few kV /cm.

Used for gene delivery and drug delivery.
106 -

Breaches subcellular vesicular
membranes using short (10 — 100
ns) and high E-field pulses (10s of
kV/cm) [2].

Does not reach the charging time of
the plasma membrane — no pore
formation.

ns pulsed electric field (nsPEF) e
induces apoptosis in mammalian 109 10% 107 10° 105 10¢ 10° 102
cells by targeting intracellular Pulse Width, t(s)  [3]
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PLASMA JETS: TOUCHING OR NOT....

e Context — Plasma medicine use of plasma
I He /O, ‘ jets in treating tissue with overlying liquid.
WA A e Thereis intrinsic variability — does the
Humid Air _ y N B
v v plasma jet “touch” or "not-touch"?
e How important is variability?
Diameter e 2D modeling study of He/O, plasma jet into
} 1.6 mm humid air onto a thin water layer over tissue.
‘ Pin Electrode .
Ga
7.5 mm Pump »
Water Layer capilary (quartz)
200 um
Tissue -
LCeIIs (e/e, = 5) it

[4]
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MODEL:

Plasma Hydrodynamics Gas Phase Plasma nonPDPSIM
Poisson’s Equation

Liquid Phase Plasma

e 2-D unstructured
mesh with spatial

Bulk Electron Energy Kinetic “Beam” dynamic range of
Transport Electron Transport 104,

R ]

e Fully implicit
plasma transport.

Neutral Transport Neutral and Plasma
Navier-Stokes Chemistry

L ]

Radiation Transport

e Time slicing algorithms between
plasma and fluid timescales.

\ 4

Surface Chemistry e Poisson’s equation is solved
and Charging throughout the computational
domain.
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MODEL GEOMETRY

Evaporation

lons e Liquid treated
Air 4 | as a "dense
L Water Layer (200 um) v v plasma®“.
S Tissue (e/fe, =5) || Dissolved_| solyated
cels ° gases e Water
Qg e evaporated
Water Layer Selecric | above the
e Membrane Permittivity | Conductivity | Relaxation water Iayer.
) (ele,) (Qlcm?) | Time (s) _
§- _ |Membrane 5.8 8.7x10% | 5.9x 10 e Thetissue acts
S .
N Cytoplasm | 30 4.8x 108 |5.5x 1010 af’ tf;e C(IjOU nter
Tissue — Nucleus Nucleus 20 3.0x10° | 5.9x 108 electroae.
100 um Tissue 5 1.0x 106 | 4.4x107

e Diffusion into water is limited by Henry’s law equilibrium at the
surface layer. O, is naturally dissolved in the liquid before plasma.

e Components of cell treated as dielectrics with permittivity,
conductivity, and dielectric relaxation times listed.
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INITIAL FLOW CONDITIONS

He 0, N, ~ HO
2% 10" em® 5x10®cem® 2x10%cm® 6x107cm® © Water evaporates from

(3-dec) liquid layer at saturated
vapor pressure.

e He jet displaces the
evaporating water vapor.

e He/O, =99.8/0.2 (4 sim)
with humid air (N,/O,/H,0
= 79.5/20/0.5) flowing in
the shielding gas (1 slm)
for 13 ms to establish flow
field.

e He jet alone effectively
“blocks” the ambient air
from the water layer.

B ET University of Michigan
MIPSE 2014 MIN Log scale MAX Institute for Plasma Science & Engr.



10 KV (NOT TOUCHING): e PROPERTIES

T, 05-8eV S. 5x10"cm’"  (4-dec) n, 5x10%cm® (3-dec)
F ) k F | k
40 ns 750 ns 60 ns 40 ns 60 ns
| [Msx10° h 1 Yixqom N
10 8x10"
50 ns 5x10 D/
8x10"
60 ns
> Cells [«—3 mMm—»| [ [ [ [ [«—3 mm—»|
A0k e -10 kV, 60 ns pulse. Plasma bullet moves as an

lonization wave (IW) propagating in He dominated
5ns sons 60ns  Channel at 2 x 107 cm/s.

e Electrons avalanche at tip of pin electrode, transition to "wall
hugging" mode in tube, then transition to axis upon exit.
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10 KV (NOT TOUCHING): E-FIELDS
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-10 kV, 60 ns pulse.

lonization wave does not

strike the water layer.

E-fields to cells / tissue
are not large enough to
Induce electroporation
or intracellular effects.

No surface charging on
the water layer.

i
e E-field at peak

voltage and end of
the pulse.
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15 kV (TOUCHING): e PROPERTIES

05-9eV S. 1x10%cm®s" (5-dec) n, 1x10°cm® (3-dec)

| [ F

36 ns 33ns

15K e -15kV, 80 ns pulse. lonization speed 8 x 107 cm/s, strikes
/ water at 33 ns and continues as surface IW through H,O
5 ns sonsons  yapor along the water surface.

e Upon striking the water layer, a restrike, positive IW propagates back
up the plasma column.

e Electrons spread onto the water layer, accumulate and solvate.
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15 kV (TOUCHING): E-FIELDS
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compression of voltage
ahead of IW & charging
of water surface.

e The E-field penetrates

producing conduction
currents.

|[E| 20 kV cm™ (2-dec)
30 ns

e -15kV, 80 ns pulse.
e |\W strikes water at 33 ns.
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d rise from

he cell and tissue
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Max E-field at cell
membrane produces

voltage drop of 0.01 V :ﬁ,:‘i:?"@:@@@ F
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15 kV (TOUCHING): E-FIELDS

|E| 100 kV cm™ (3-dec) |E| 20 kV cm™ (2-dec)
L 1o kv D kY e -15kV, 80 ns pulse —end

of pulse.

e E-field from surface
charging (80 kV/cm) at
water layer does not
Influence cells.

e Max E-field at membrane
Is too low for pore
formation.

e Limited residual E-field in
5 swenoao s CEllS in afterglow.

_ e Intracellular field is
IE| 75 kV-cm” (3-dec) 70 ns below predicted IEM
range.
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20 kV (TOUCHING): e PROPERTIES

T, 05-11eV S, 1x10%cm®s” (5-dec) n 1x10%cm®  (3-dec)

H | F

és ns 23 ns

ZJ [

e -20 kV pulse. Plasma bullet moves as an ionization wave (IW) at 1.4 x
108 cm/s.

o |W strikes water at 20 ns — 13 ns earlier than 15 kV case and with higher
electron temperature, and source ionization levels.

e Electron density is 3-5 times higher in conduction channel and at
surface than 15 kV case.
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20 kV (TOUCHING): E-FIELDS

|q|)5| ?2-0500k¥ch'1 e -20 kV pulse. |E| 30 kV cm™ (2-dec)
BT ', | o H.igher voI.tage. creates o~ 17 ns
] m a I 23n hlgher E-field in all
,m regions.
%’E . e Max E-field in cytoplasm
725 5 Is 9 kV/cm; membrane 21

kV/cm — still below
predicted thresholds.

e Dielectric relaxation time
for membrane 6 us;
cytoplasm 0.5 ns.

[E|] 30kVcm'(2-dec) 17ns

e Formation of

- e conduction channel | n N
[E| _30kVem" (2-dec) 20ns foIIowing the IW [C OO O O @) ©
: . ' . . "_*:1 (OW C
_— drops E-field behind (e ””"’;;
IE| 30kVcm' (2-dec) 23 ns the IW in air. . E” k’ ES LIE
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CONCLUDING REMARKS

e Plasma jets touching (-15 kV, -20 kV) and not-touching (-10
kV) a 200 um water layer were computationally investigated.

e The spreading of the plasma over the liquid surface when
touching cases enables photolysis, direct charge exchange
reactions and direct solvation of the electrons.

e Also creates a surface electric field at a maximum of 80
kV/cm for the -15 kV case.

e Not-touching jet will not produce electroporation or
Intracellular electro-manipulation as the e-fields are much
too low for either.

e The touching cases are influenced by the absence of surface
charging effects on the cells which decreases the likelihood
of electroporation and intracellular electro-manipulation.
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