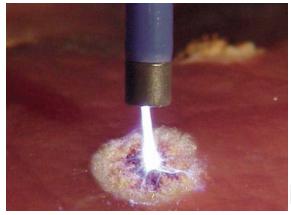
PLASMA JET INTERACTIONS WITH WET CELLS*

Seth A. Norberg^{a)}, Eric Johnsen^{a)}, and Mark J. Kushner^{b)}

a)Department of Mechanical Engineering
University of Michigan, Ann Arbor, MI 48109, USA
norbergs@umich.edu, ejohnsen@umich.edu

b)Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA

mjkush@umich.edu


http://uigelz.eecs.umich.edu

2014 Michigan Institute for Plasma Science and Engineering
Ann Arbor, MI
8 October 2014

*Work supported by DOE Fusion Energy Science and National Science Foundation

PLASMA MEDICINE

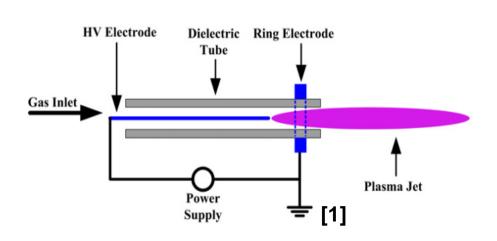
- Treatment of biomedical surfaces and human tissue with atmospheric pressure plasma jets has been shown to:
 - Disinfect surfaces by killing bacteria
 - Sterilize medical equipment and implants
 - Sterilize food and food packaging
 - Induce blood coagulation
 - Kill cancer cells
 - Facilitate healing in chronic wounds
 - Sterilize acute wounds

[1]

 In this poster, I will show the results of a 2-D model that investigated the interaction of the electric field produced by an atmospheric pressure plasma jet and wet cells and the potential for electroporation or intracellular electromanipulation.

ATMOSPHERIC PRESSURE PLASMA JETS (APPJ)

- Low-temperature non-equilibrium atmospheric pressure plasma jets provide therapeutic and sterilizing effects through:
 - Fluxes of charged and reactive species to surfaces
 - Ion and photon flux to cell structure
 - Intracellular and surface electric fields



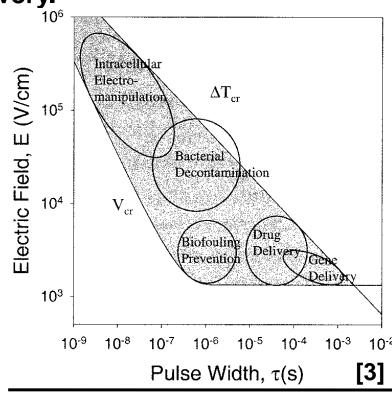
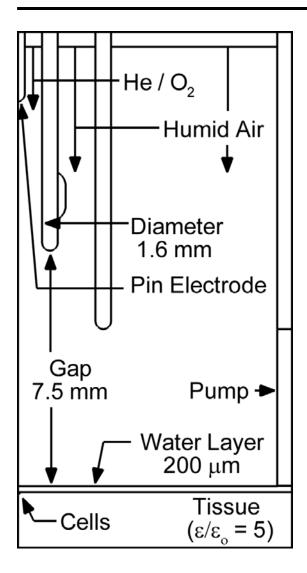
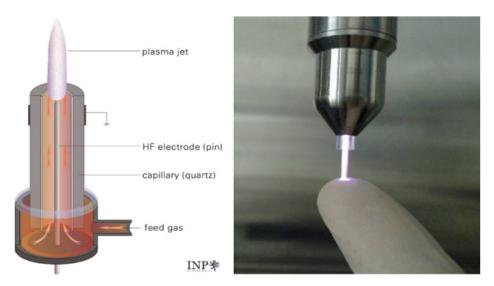


Figure from ZIK plasmatis at the INP Greifswald

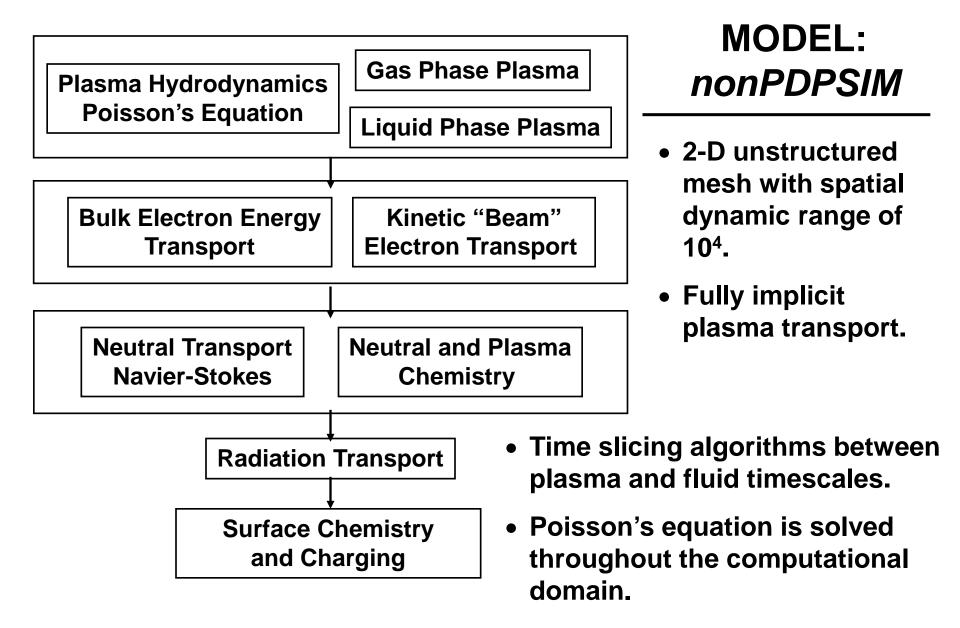
BIOELECTRONICS REVIEW

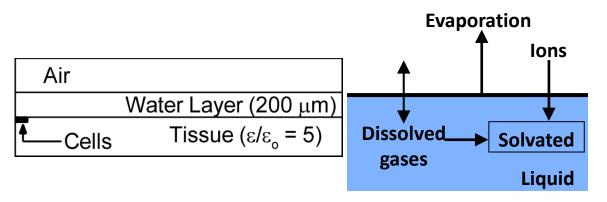

Electroporation:

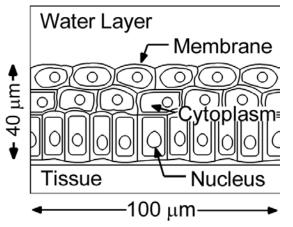
- Transmembrane pore formation resulting from accumulation of electric charge at the cell membrane.
- Threshold membrane voltage drop of 0.1 1 V over pulses of 0.1 – 10 ms with electric fields of a few kV / cm.
- Used for gene delivery and drug delivery.
- Intracellular Electro-manipulation (IEM):
 - Breaches subcellular vesicular membranes using short (10 – 100 ns) and high E-field pulses (10s of kV/cm) [2].
 - Does not reach the charging time of the plasma membrane – no pore formation.
 - ns pulsed electric field (nsPEF) induces apoptosis in mammalian cells by targeting intracellular structures.



University of Michigan Institute for Plasma Science & Engr.

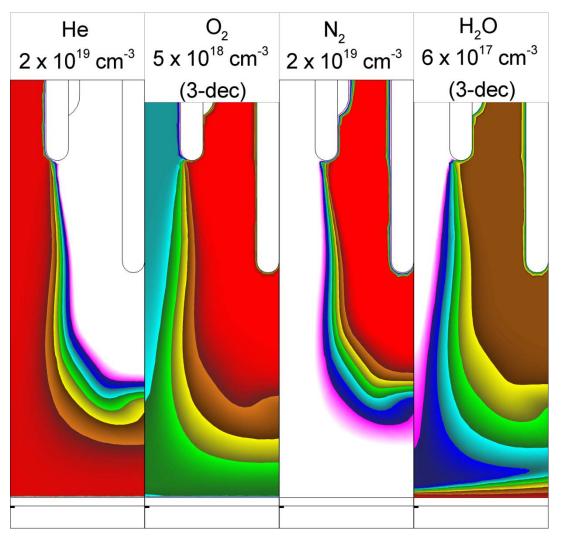

PLASMA JETS: TOUCHING OR NOT....


- Context Plasma medicine use of plasma jets in treating tissue with overlying liquid.
- There is intrinsic variability does the plasma jet "touch" or "not-touch"?
- How important is variability?
- 2D modeling study of He/O₂ plasma jet into humid air onto a thin water layer over tissue.



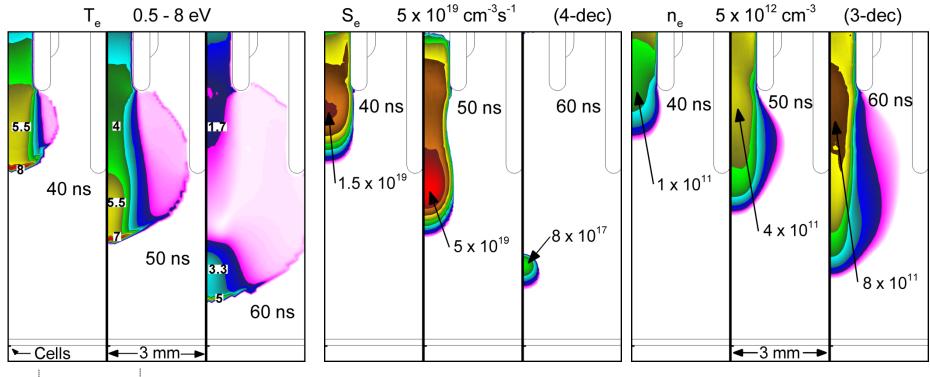
[4]

MODEL GEOMETRY

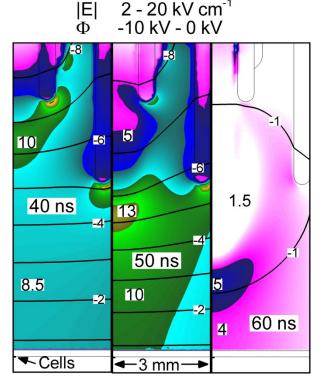


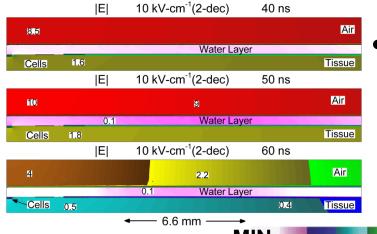
			Dielectric
	Permittivity	Conductivity	Relaxation
	(ε/ε _o)	$(\Omega^{-1} \text{ cm}^{-1})$	Time (s)
Membrane	5.8	8.7 x 10 ⁻⁸	5.9 x 10 ⁻⁶
Cytoplasm	30	4.8 x 10 ⁻³	5.5 x 10 ⁻¹⁰
Nucleus	20	3.0 x 10 ⁻⁵	5.9 x 10 ⁻⁸
Tissue	5	1.0 x 10 ⁻⁶	4.4 x 10 ⁻⁷

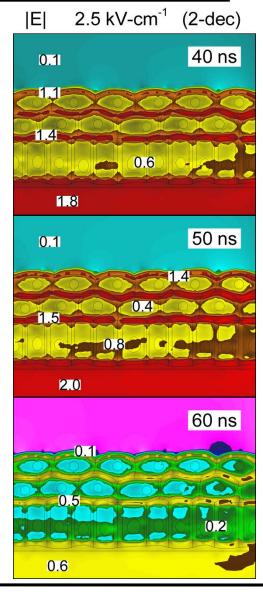
- Liquid treated as a "dense plasma".
- Water
 evaporated
 above the
 water layer.
- The tissue acts as the counter electrode.
- Diffusion into water is limited by Henry's law equilibrium at the surface layer. O₂ is naturally dissolved in the liquid before plasma.
- Components of cell treated as dielectrics with permittivity, conductivity, and dielectric relaxation times listed.


INITIAL FLOW CONDITIONS

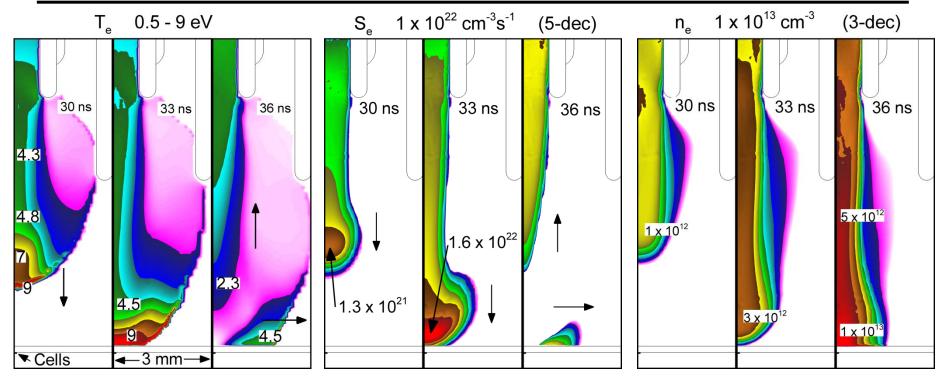
- Water evaporates from liquid layer at saturated vapor pressure.
- He jet displaces the evaporating water vapor.
- He/O₂ = 99.8/0.2 (4 slm) with humid air (N₂/O₂/H₂O = 79.5/20/0.5) flowing in the shielding gas (1 slm) for 13 ms to establish flow field.
- He jet alone effectively "blocks" the ambient air from the water layer.


10 kV (NOT TOUCHING): e PROPERTIES


- -10 kV, 60 ns pulse. Plasma bullet moves as an ionization wave (IW) propagating in He dominated channel at 2 x 10⁷ cm/s.
 - Electrons avalanche at tip of pin electrode, transition to "wall hugging" mode in tube, then transition to axis upon exit.

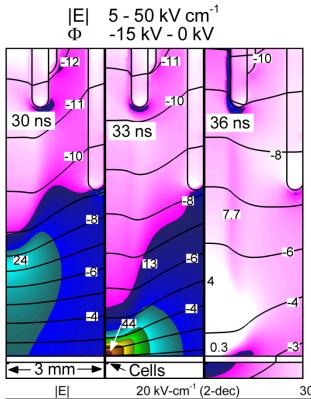

10 kV (NOT TOUCHING): E-FIELDS

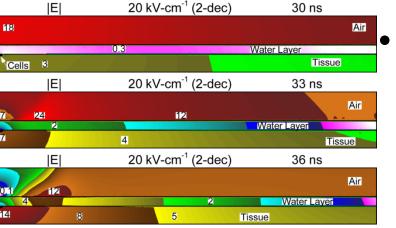
- -10 kV, 60 ns pulse.
- Ionization wave does not strike the water layer.
- E-fields to cells / tissue are not large enough to induce electroporation or intracellular effects.
- No surface charging on the water layer.


 E-field at peak voltage and end of the pulse.

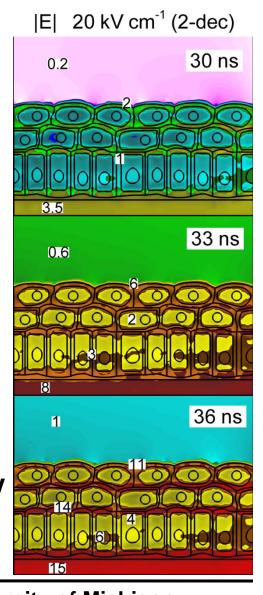
University of Michigan Institute for Plasma Science & Engr.

Log scale

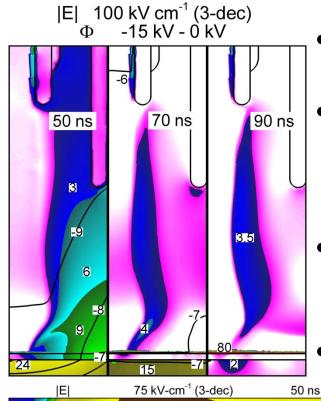

15 kV (TOUCHING): e PROPERTIES


- -15 kV 5 ns 60 ns 80 ns
- -15 kV, 80 ns pulse. Ionization speed 8 x 10⁷ cm/s, strikes water at 33 ns and continues as surface IW through H₂O vapor along the water surface.
- Upon striking the water layer, a restrike, positive IW propagates back up the plasma column.
- Electrons spread onto the water layer, accumulate and solvate.

15 kV (TOUCHING): E-FIELDS

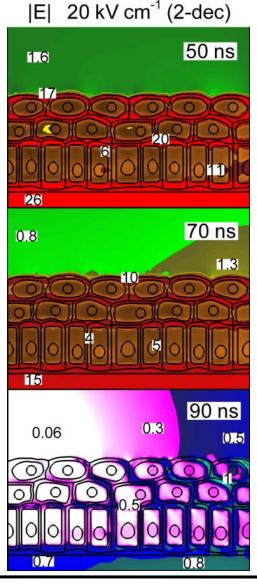


- -15 kV, 80 ns pulse.
- IW strikes water at 33 ns.
- E-field rise from compression of voltage ahead of IW & charging of water surface.
- The E-field penetrates into the cell and tissue producing conduction currents.



Max E-field at cell membrane produces voltage drop of 0.01 V – too low for pore formation.

MAX


15 kV (TOUCHING): E-FIELDS

75 kV-cm⁻¹ (3-dec)

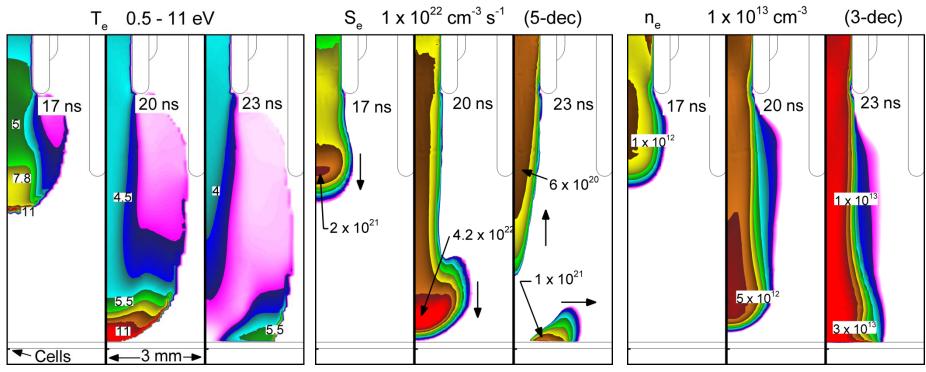
75 kV-cm⁻¹ (3-dec)

- -15 kV, 80 ns pulse end of pulse.
- E-field from surface charging (80 kV/cm) at water layer does not influence cells.
- Max E-field at membrane is too low for pore formation.
 - Limited residual E-field in cells in afterglow.
 - Intracellular field is below predicted IEM range.

University of Michigan

MAX Institute for Plasma Science & Engr.

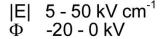
Water Laver

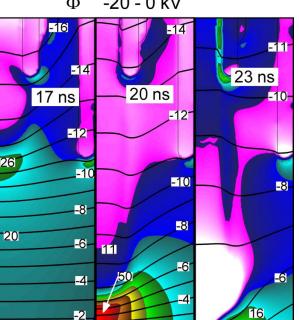

70 ns

90 ns

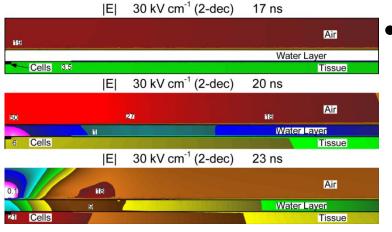
Tissue

Tissue

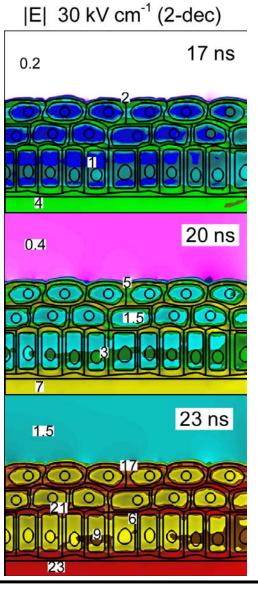

20 kV (TOUCHING): e PROPERTIES



- -20 kV pulse. Plasma bullet moves as an ionization wave (IW) at 1.4 x 10⁸ cm/s.
- IW strikes water at 20 ns 13 ns earlier than 15 kV case and with higher electron temperature, and source ionization levels.
- Electron density is 3-5 times higher in conduction channel and at surface than 15 kV case.



20 kV (TOUCHING): E-FIELDS



- -20 kV pulse.
- **Higher voltage creates** higher E-field in all regions.
- Max E-field in cytoplasm is 9 kV/cm; membrane 21 kV/cm - still below predicted thresholds.
- Dielectric relaxation time for membrane 6 µs; cytoplasm 0.5 ns.

 Formation of conduction channel following the IW drops E-field behind the IW in air.

CONCLUDING REMARKS

- Plasma jets touching (-15 kV, -20 kV) and not-touching (-10 kV) a 200 µm water layer were computationally investigated.
- The spreading of the plasma over the liquid surface when touching cases enables photolysis, direct charge exchange reactions and direct solvation of the electrons.
- Also creates a surface electric field at a maximum of 80 kV/cm for the -15 kV case.
- Not-touching jet will not produce electroporation or intracellular electro-manipulation as the e-fields are much too low for either.
- The touching cases are influenced by the absence of surface charging effects on the cells which decreases the likelihood of electroporation and intracellular electro-manipulation.

REFERENCES

- [1] X. Lu, M. Laroussi, V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets", *Plasma Sources Sci. Technol.*, vol. 21, no. 3, p. 034005, (2012).
- [2] K. Schoenbach, S. Beebe, E. Buescher, "Intracellular Effect of Ultrashort Electric Pulses", *Bioelectromagnetics*, vol. 22, pp. 440-448, (2001).
- [3] K. Schoenbach, S. Katsuki, R. Stark, E. Buescher, S. Beebe, "Bioelectrics – New Applications for Pulsed Power Technology", *IEEE Transactions on Plasma Science*, vol. 30, no. 1, pp. 293 – 300, (2002).
- [4] M. Hoentsch, T. von Woedtke, K-D Weltmann, and J.B. Nebe, "Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro", *J. Phys. D: Appl. Phys.*, vol. 45, no. 2, p. 025206, (2012).