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Introduction
Multipactor  [1, 2] is a resonant phenomenon in which an electromagnetic field causes a free 
electron to impact a surface, resulting in the surface emitting one or more secondary electrons. 
If the surface geometry and electromagnetic fields are appropriately arranged, the secondary 
electrons can then be accelerated and again impact a surface in the bounding geometry.  If the 
net number of secondary electrons participating in multipactor is non-decreasing, then the 
process can repeat indefinitely.  This phenomenon is of considerable practical interest in the 
design and operation of radio frequency (RF) resonant structures, windows, and supporting 
structures.
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Figure 4:  Multipactor sustainability in a notional coaxial geometry, based upon Furman's full 
model averaged over 100 trials (left) and a single run using medianized model (right).
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Conclusions and Future Work
● For the cases we have examined, multipactor simulations based upon Furman's fully 

stochastic SEY model can be well-approximated by a medianized SEY simplification.

● This will allow for considerable computational savings, for example a 100:1 speed increase 
over simulating 100 independent trials using Furman's full model.  

● Applications would include optimizing resonant structures for multipactor performance. 

● Future work will assess the accuracy of the medianized Furman model in different 
geometries and field excitations.

● Future work will also explore the relative accuracy of the medianized Furman model when 
generalized to other median percentiles besides the 50th percentile median.  
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The formation of multipactor is strongly dependent upon the secondary electron yield (SEY) of 
a surface, and the emission velocities of the emitted electrons. A typical SEY curve is shown in 
Figure 1 below, illustrating a low SEY at low and high impact energies, and a high SEY at an 
intermediate impact energy.  Two SEY models are popular within different technical 
communities: 

Vaughan's model [3]
● Popular in the radio frequency (RF) and microwave source industry. 
● More computationally simple.
● Does not include SEY contribution from low-impact energy electrons.
● Does not specify emission process (energy, angle, number of electrons, etc.).

Furman's model [4]
● Popular in the particle accelerator community.
● More computationally complex.
● Includes SEY contribution from low-impact energy electrons.
● Stochastically specifies the emission process.
● Requires a Monte Carlo simulation approach in practice.

Medianized Variant of Furman's Model

● Recent work has suggested that multipactor formation can be very sensitive to low impact 
energy electrons [5], as shown in Figure 3.  This makes Furman's model particularly 
appealing. 

● However, Furman's SEY model necessitates computationaly costly Monte Carlo 
simulations to characterize multipactor susceptibility.  

● Instead, consider using the (incident energy and angle dependent) median emission 
energy and emission angle, and running only one simulation.  

● This medianized SEY model will not explore the entire phase space:  multipactor 
sustainability will be underestimated, but by how much?  

● Respectable multipactor prediction agreement between SEY models is show in Figure 4.

● We next examined a more complicated coaxial field environment.  
● Previous work [6] explored multipactor in the presence of additive perturbative 3rd 

harmonic TEM mode, we will use this again.
● Perturbative mode expressed mathematically as -3Vo·cos(3ωt+3θ)·sin(3πz/L).
● Predicted multipactor is shown for particles at z=0.5L (Figure 5) and z=0.2L (Figure 6).   

 
● Both SEY models are in agreement over much of the search space. 

● Medianized model underestimates the multipactor susceptibility to some degree. 
● But medianized model requires only one simulation, not a Monte Carlo run.
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Figure 5:  Multipactor sustainability in a notional coaxial geometry at z=0.5L with a perturbative 
TEM3 mode present, based upon Furman's full model averaged over 100 trials (left) and a 
single run using medianized model (right).
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Figure 6:  Multipactor sustainability in a notional coaxial geometry at z=0.2L with a perturbative 
TEM3 mode present, based upon Furman's full model averaged over 100 trials (left) and a 
single run using medianized model (right).
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Figure 2:  Notional coaxial cavity.
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Figure 1:  Typical SEY  curve.
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Numerical Multipactor Simulations
A coaxial cavity shorted at both ends (Figure 2) was excited by a TEM mode specified by 
Vo·cos(ωt+θ)·sin(πz/L).

● Vo is the peak instantaneous voltage. 
● θ is the phase.
● ω is the cavity-dependent resonant angular frequency.  
● z is the position along the axial direction, measured from the cavity end.
● Cavity length L = 1.86 m.
● Cavity inner radius a = 1 cm.
● Cavity outer radius b = 5.65 cm.
● Mode resonant frequency is 80.5 MHz. 
● Cavity dimensions chosen to yield maximum SEY at Vo ≈ 1000 V.

For each voltage Vo and phase θ to be simulated, single-particle simulations were performed 
for 10 cycles:  either a boundary strike a a complete RF period, whichever occurs first:  

(1) Allow an electron starts from rest at the outer wall.
(2) Electron is accelerated by the cavity fields until it strikes a boundary.
(3) Record SEY for the impact.
(4) Generate secondary electron from emission energy and angle distributions.  
(5) Repeat from step #2.  

The net SEY is computed as the product of all the single-impact SEY values.
● Gives a proxy measure of the presence of multipactor.
● Net SEY < 1 would indicate that multipactor is not sustainable.  
● Nonzero SEY required at least two boundary impacts over the 10 simulation cycles.
● Otherwise, net SEY was defined to be 0.  

Furman's SEY model requires Monte Carlo simulations.
● Secondary electrons have random scattering energies and angles.
● 100 independent trials were run for each test point in voltage Vo and phase θ
● Net SEY is averaged over the trials to determine the predicted multipactor.
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Figure 3:  Multipactor sustainability in a notional coaxial geometry, based upon Vaughan's 
model (left) and  Furman's full model averaged over 10 trials (right).
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