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Electron density scale-lengths, L, are estimated from optical probe

The two-plasmon decay instability can be detrimental to We performed experiments spanning a variety of
measurements, to be used in TPD simulations

inertial confinement fusion hydro and collisional conditions for TPD

The two-plasmon decay (TPD) instability plays a major role in AFR images electron density profiles, n., by
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generating hot electrons (> 10 keV) in long-scale length plasmas. 20 - 125 um foil, 4 beams @ 351 nm. mapping refraction of probe beam through = e Crach
Z varies from 3.5 -79 o i 5 . .
I;~8x10**Wcm plasma to contours of constant (known) imulation
Understanding hot electron production is important to mitigate \ refraction angle in the image plane [4].
unwanted target preheat, and high-energy x-rays that interfere with
diagnostics. Pk Refraction angle relates to n, via:
expansion
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We performed experiments on the OMEGA EP laser to study how TPD Otor(x,y) = 5 V.. / Nedz 0 Y PP L -F
scales over a wide range of plasma conditions. It is seen that hot © - -15001)(000-500 0 1000
electron fraction and temperature decrease with plasma Z, thought \ ald X, pm _
to be a result of combined hydrodynamic and collisional effects. Estimates of L, using simple model, shows ,
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radiation-hydrodynamic simulations £ 200 °
Growth of TPD is limited by plasma hydrodynamics CRASH [5] radiation-hydrod ic simulati S 200/¢ o
and collisionality, which depend on Z Chosen target materials span a wide range of (Z): show reasonable agreement with data for low- % 100} 9
CH (3.5), Al (13), Ti(22), Cu(29), Mo(42), Ag(47), Au(79) to-mid-Z targets, but for hi-Z materials large S 0 |
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variations in L, above n_/10 7

Multiple laser beams can drive resonant, or “common” electron plasma L _
waves (EPWSs) with gains much larger than those for a single beam [1]. Hard x-ray measurements indicate that hot _electron fraction o' 2
The EPWs’ energy is transferred to hot electrons via Landau damping. and temperature decrease as the plasma Z increases
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Convective (spatial) A bremsstrahlung x-ray spectrometer measures the hard x-rays produced Tl SRS 1. SRS WSS critical lead to uncertainties in
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Kepus | - T by the interaction of TPD-generated hot electrons in the target. : estimates of L,
= Ko,1~Kc EPW  ~ eUc” > 10° ' ' ' 0
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< T. |y Hot electron fraction, f, , and temperature, T, , estimated using brems. \  H
—> I / / 49 thick-target model for Maxwellian electrons:
] s . Total overlapped . .
k : : PP dN th A L. and corresponding plasma parameters from rad-hydro sims. and
. k R ion, n_~n /4 Intensity X-ray spectrum: R o —E/Thot o . L .
=k, — k¢ o2 esonant region, n,~n/ ' iE I3 € modeling are used to calculate TPD gain and later as initial conditions
for TPD simulations to estimate f, . and T, ,.
Higher Z leads to: ! ) TPD simulations can help describe which mechanisms are most
-1 . St
» more collisional damping (v,;) of EPWs before their energy is 19 OKCH >0 | | | | lugfgielaclate gl £l 1D
transferred to hot electrons o & ©OnDat 409 DetECLOR:
2® Te |®Froula3]| _ ; | o BMXS
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* slower expansion, shorter density scale length, L, at N, = o LI S B - ; ;
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* Lower threshold for nonlinear saturation [Z] N o v o
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. o - - ) | | | | Hot electron fraction and temperature decrease with plasma Z,
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