Ultrathin Liner-Plasma Implosion Experiments on a sub-MA Current Generator™
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Magnetized Liner Inertial Fusion uses a heating
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a Z pinch to implode a cylinder of hydrogen fuel.
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1-MA linear transformer driver Axial B-field effects—How can we compare instability growth for different g?
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Eqg. (3) gives 1nstability growth as a function of displacement,
independent of acceleration. While this equation 1gnores stabilizing
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—axial field shifts instability to longer wavelengths,
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