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The hybrid-DK simulation was benchmarked with Koo and Boyd’s hybrid-Particle-in-Cell (PIC)
simulation [3], [4]. Results in Figure 5 indicate that the DK simulation performs adequately in
comparison to the PIC simulation.

To address coupling at the anode A-line, a study is conducted on the electron boundary
conditions in the near-anode region. Application of a Neumann electron temperature
boundary condition in conjunction with a sheath condition at the anode A-line offers
improvement in the potential profile, but it does not result in a satisfactory solution. The
calculation for the sheath potential is identical to that in HPHall [5]:
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Fig. 1: Xenon Hall thruster [1] Fig. 2: Hall thruster channel [2]
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Hall thrusters generate thrust in the following manner: osf |
- A static, primarily radial magnetic field is applied between two
electromagnets.
Neutral gas (typically xenon) is injected at the anode side of the
thruster.
An external cathode ejects electrons into the flow field.
Due to the potential drop across the thruster, electrons travel toward
the anode. However, they become magnetized and are therefore
impeded by the magnetic field.
Electrons collide with neutral atoms, ionizing them. lons have a large
gyroradius and therefore remain largely un-magnetized. it
lons are accelerated out of the thruster via the electric field,

generating thrust.

a : 1 4 T N ~S—PR N 2P SEPRE
o 0 0.02 00

y o
0.04 0.06
Axial position (m)

1 1 .
0.04 0.06 0.02

Axial position (m)

I
0.08 0.1 250 -

(a) Number density. (b) Ionization rate. 200 |-

150 -

300 T 20
Hybrid-PIC average electron energy

Hybrid-PIC average potential
Hybrid-DK average electron energy
Hybrid-DK average potential

,,,,,,,,

Average Potential (V)

100

250 -

---------

50

4

15

Average Electron mean energy (eV)

200

o —

I I 1
0.06

Axial position (m)

, 0.08
150 | 10

100 |

Average potential (V)

Figure 8: Average axial profiles of potential and electron energy at the channel
centerline for cases with and without an anode sheath condition att=1.0 ms

Average electron energy (eV)

0.08 0.4

I d l |
0.06
Axial position (m)

The following sheath condition, applied at the simulation boundary where the anode surface is
located (z = 0), may provide closure [6]. The key is to ensure that properties calculated in the
anode A-cell are consistent.

(c) Potential and electron mean energy.

Figure 5: Axial profiles of average plasma properties along the channel centerline at t = 0.94 ms [4]

However, anode coupling (Figure 6) may contribute to the damped hybrid-DK discharge
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Figure 3: Direct Kinetic simulation domain Figure 4: Electron

simulation domain

Conclusion and Future Work References

A hybrid-Direct Kinetic (DK) simulation is under development at the
University of Michigan. A two-dimensional DK solver (Figure 3) is coupled
with a quasi-one dimensional electron solver (Figure 4).
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In recent published work, a hybrid-DK simulation was benchmarked with a hybrid-PIC simulation, both of which
utilized identical electron algorithms [3]. However, it became apparent that the physics in the near-anode region

lon and neutral Boltzmann equations are described by: of the hybrid-DK domain must be better resolved to avoid anode coupling.
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Preliminary results indicate that an electron-repelling sheath at the anode should be accounted for in the electron
model. An approximate sheath boundary condition, similar to that applied in the hybrid-PIC simulation HPHall, is
installed but is determined insufficient for the hybrid-DK simulation since it does not account for the electron
energy flux in the near-anode region.
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Integration of the momentum equation along a magnetic field line results
in the thermalized potential, which is a reduced description of the plasma
potential:
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