
• The Rosenbluth-Fokker-Planck operator is given by the following diffusion-
advection equation, based on the Rosenbluth potentials: 

• The resulting non-linear system is solved through Jacobian-free Newton 
Krylov (JFNK) methods. This avoids forming or storing the Jacobian matrix.

• The methodology to solve this equation is given by the following chart:

• While often the effect of the collision term is assumed to be negligible in a 
plasma (the Vlasov equation), systems such as Hall effect thrusters for 
spacecraft propulsion rely on collisions for their operation. 

• The Fokker Planck model, based on an inverse square potential, offers 
higher accuracy than the widely used BGK model while being more 
efficiently handled numerically than the explicit collision term.

• Kinetic theory aims to describe gases on a macroscopic level by analyzing 
their motion on a microscopic level. Particle interaction may be 
approximated with the hard sphere model, an inverse power law, and 
others.

• The Boltzmann Equation results, which must be solved in time, space, and 
velocity, for a given distribution. The right side is the collision term.
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➢ Background

➢ Motivation

➢ Methods

➢ Results
• Simulations were carried out involving a variety of conditions. The most basic case to test 

the algorithm is to initialize a Maxwellian distribution and ensure this distribution is 
maintained with time. Given below are the results of such a simulation for an Argon 
plasma on a 64x32 grid in a cylindrically symmetric domain, using a time step of 1 µs, and 
run for 10 ms.

• The Maxwellian distribution was maintained with time. Note that the distribution became 
slightly more peaked; it is shown below that this does not indicate a significant change in 
the distribution.

• Mass, momentum, energy and entropy were tracked. The change in these properties per 
time step, as compared to the initial values of the Maxwellian, are given in the following 
array of plots.

➢ Discussion

➢ Conclusions

➢ Acknowledgements

• Good conservation of mass, momentum, and energy, in addition to a 
constant increase in entropy, were achieved by this algorithm; this is 
crucial in assessing the reliability of future results. 

• The simulation grew unstable if the distribution neared the boundaries; 
better handling of boundary conditions may fix this problem.

• The ability of this algorithm to produce meaningful results was very 
sensitive to a variety of inputs, such as: time step, mesh refinement, and 
domain bounds. Making the simulation more robust to setup parameters 
would greatly reduce time for simulation. 

• Future work would benefit from preconditioning of the JFNK iteration and 
using faster elliptic schemes, such as conjugate gradient methods. In 
addition, as the current implementation is written in MATLAB, making the 
program more efficient through vectorizing or parallelization could save 
significant computation time. Multi-species functionality is also desirable in 
the future, to describe more complex and physically realistic systems.

• A Rosenbluth-Fokker-Planck algorithm has been implemented here for 
single-species, showing good conservation of the necessary properties. 
This allows for an efficiently solved model of collisions in a plasma, yielding 
results which more closely model physical plasma systems and allowing for 
the study of relaxation of a plasma towards equilibrium. 
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