

An Exact Hot-Tube Solution for Thin Tape Helix Traveling-Wave Tube*

Patrick Y. Wong¹, David P. Chernin², Y. Y. Lau¹, Ronald M. Gilgenbach¹, and Brad W. Hoff³

¹University of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI

²Leidos Inc., Reston, VA

³Air Force Research Laboratory, Kirtland, NM

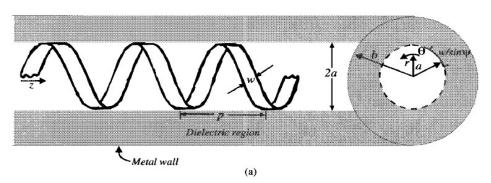
8th MIPSE Graduate Student Symposium 18 October 2017

*Work supported by AFOSR Grant No. FA9550-15-1-0097.

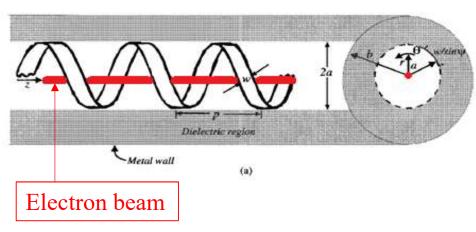
UNIVERSITY OF MICHIGAN

Motivation

- Traveling-Wave Tubes (TWTs) are amplifiers used in satellite communications
- Gain is governed by Pierce dispersion relation for the beam-circuit interaction:


$$[(\beta - \beta_e)^2 - 4\beta_e^2 Q C^3][\beta_{ph} - \beta] = \beta_e^3 C^3$$
Beam Mode
Circuit Mode
Coupling

$$\beta$$
 = propagation constant C = gain parameter $\beta_e = \omega/v_0$ Q = space-charge parameter, $\beta_{ph} = \omega/v_{ph}$ very difficult to determine


This work: Determine Q reliably for first time from an exact theory.

UNIVERSITY OF MICHIGAN

Exact Solution for Tape Helix TWT

 Cold-tube (no beam) dispersion relation derived exactly in [1]

Add in a pencil beam.
 Obtain exact hot-tube dispersion relation

[1] D. Chernin, et al., IEEE Trans. ED 46, 7 (1999).

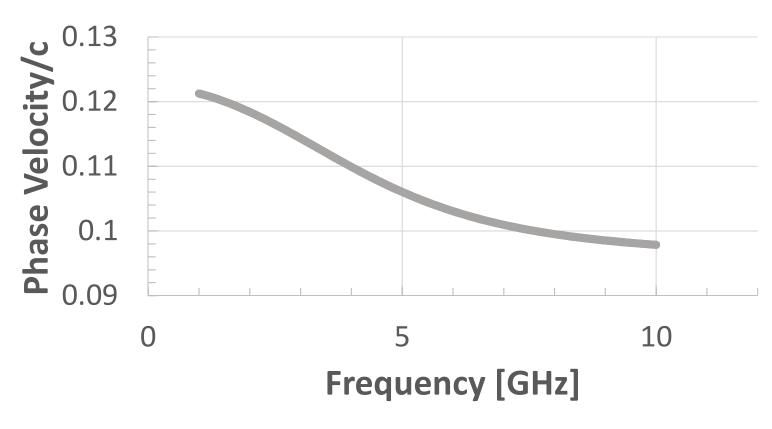
Previous Models of Q (or QC)

- Branch & Mihran [2]:
 - Replaces the helix with a perfectly-conducting tube (commonly used)
- Sheath Helix [3]:
 - Improvement on Branch & Mihran: current follows helical path
 - Used in the large-signal helix TWT codes

[2] G. M. Branch and T. G. Mihran, IRE Trans. ED 2, 3 (1955).

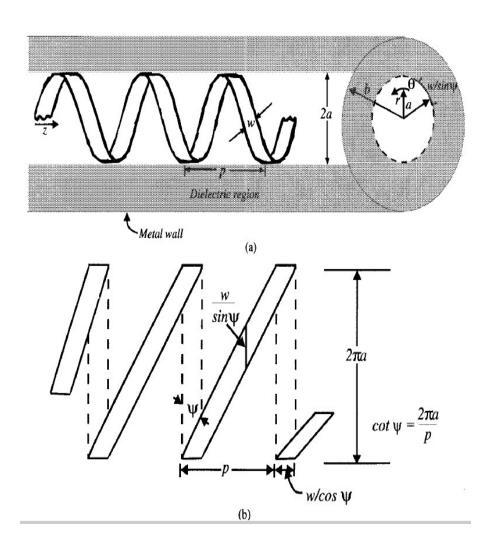
[3] T. M. Antonsen, Jr. and B. Levush, NRL report NRL/FR/6840-97-9845 (1997).

The Hot-Tube Dispersion Relation


$$D(\beta; \omega) = \det(M) = 0$$
,

$$M_{ll'} = (-1)^l j^{l+l'} \sum_{n=-\infty}^{\infty} \begin{pmatrix} J_l(\alpha_n) & 0 \\ 0 & \frac{l+1}{\alpha_n} J_{l+1}(\alpha_n) \end{pmatrix} \widetilde{Z_n} \begin{pmatrix} J_{l'}(\alpha_n) & 0 \\ 0 & \frac{l'+1}{\alpha_n} J_{l'+1}(\alpha_n) \end{pmatrix}, l, l' = 0, 1, 2, \dots$$

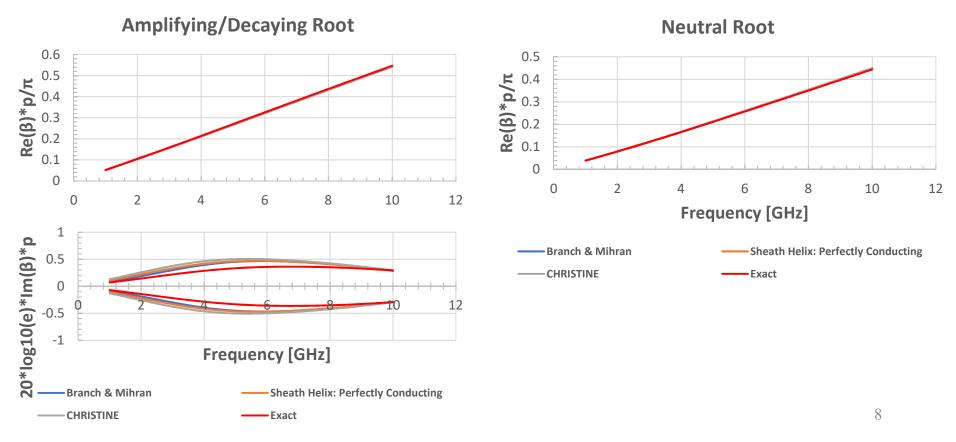
If beam current \rightarrow 0, have verified analytically that the cold-tube dispersion relation is recovered


Cold-tube limit (numerical)

—Cold-Tube (Analytical) —Cold-Tube Limit (Analytical) —CHRISTINE

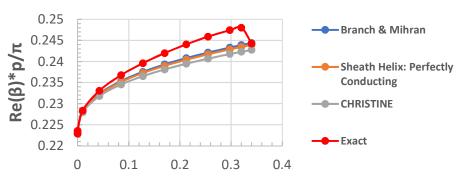
Test Case

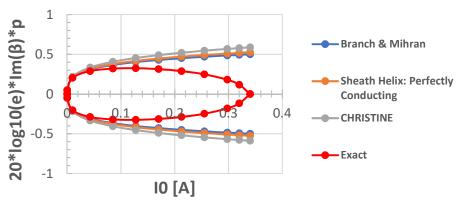
Parameter	Value
Tape radius (a)	0.1245 cm
Pitch (p)	0.0801 cm
Helix pitch angle (ψ)	5.85°
Wall radius (b)	0.2794 cm
Dielectric constant of supporting layer $(\varepsilon_r^{(2)})$	1.25

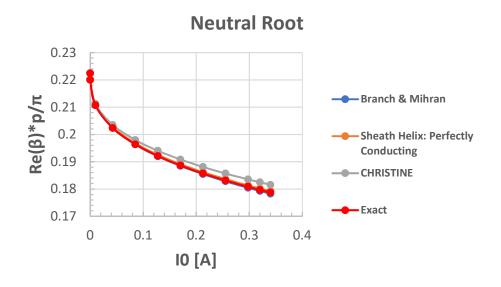

With
$$\frac{w}{pcos(\psi)} = 0.2$$

Parameter	Value
Beam radius (r_b)	0.05 cm
Beam voltage (V_b)	3 kV
Beam current (I_0)	0.17 A

Hot-Tube Results Fixed Beam Current I_0


Always numerically found three roots, β_1 , β_2 , β_3 , with two of the roots occurring in complex conjugates





Hot-Tube Results Fixed Signal Frequency (4.5 GHz)

Amplifying/Decaying Root

A New Space-Charge Parameter, q

• Impossible to construct the Pierce parameters Q and C self-consistently from the three exact roots, β_1 , β_2 , β_3 :

$$(\beta - \beta_1)(\beta - \beta_2)(\beta - \beta_3) = 0$$

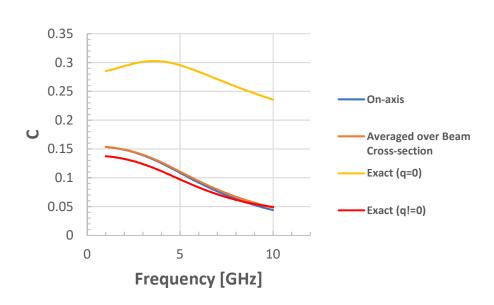
• Need to introduce an additional space-charge parameter, q

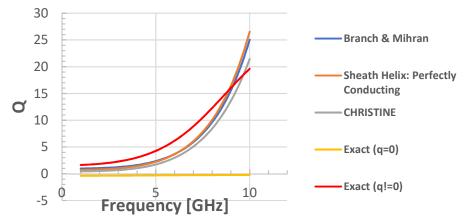
$$[(\beta - \beta_e)^2 - 4\beta_e^2 Q C^3][(\beta_{ph} - \beta) + 4\beta_{ph} Q C^3] = \beta_e^3 C^3$$
Beam Mode
Circuit Mode
Coupling

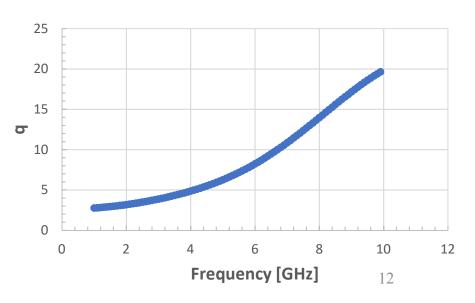
Q: Modification of beam mode by space-charge effects

q: Modification of circuit mode by space-charge effects

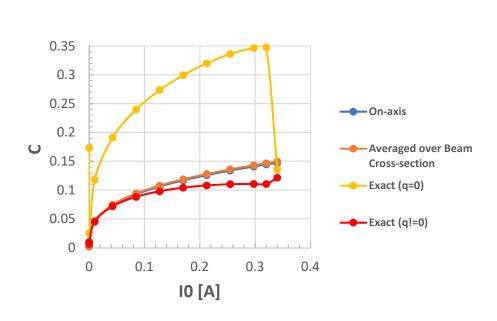
Note: *q* is like a detune in the circuit, so it could be very important.

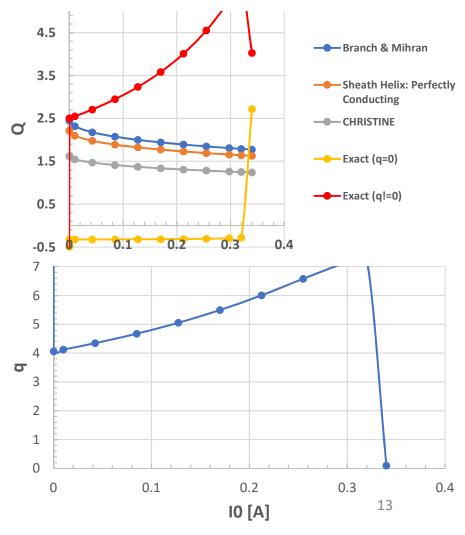



Determination of Q, q, and C from β_1 , β_2 , β_3


$$\begin{cases} qC^{3} = \frac{1}{4} \left(\frac{\beta_{1} + \beta_{2} + \beta_{3} - 2\beta_{e}}{\beta_{ph}} - 1 \right) \\ QC^{3} = \frac{1}{4} \left(1 - \frac{\beta_{1}\beta_{2} + \beta_{2}\beta_{3} + \beta_{1}\beta_{3} - 2\beta_{e}\beta_{ph}(1 + 4qC^{3})}{\beta_{e}^{2}} \right) \\ C^{3} = \frac{\beta_{e}^{2}(1 - 4QC^{3})\beta_{ph}(1 + 4qC^{3}) - \beta_{1}\beta_{2}\beta_{3}}{\beta_{e}^{3}} \end{cases}$$

The Pierce Parameters Fixed Beam Current I_0





The Pierce Parameters Fixed Signal Frequency (4.5 GHz)

Conclusions

- An *exact* hot-tube dispersion relation for a realistic tape helix TWT was derived, for the first time.
- Discovered a new parameter q that accounts for space-charge effects on circuit mode, possibly as important as the well-known Q that accounts for space-charge effects on beam mode.
- Q, q, and C are extracted from the exact dispersion relation, necessary for non-linear code development.