

Origin of Second Harmonic Signals in Octave Bandwidth Traveling-Wave Tubes*

Patrick Y. Wong¹, Y. Y. Lau¹, David P. Chernin², Ronald M. Gilgenbach¹, and Brad W. Hoff³

¹University of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI

²Leidos Inc., Reston, VA

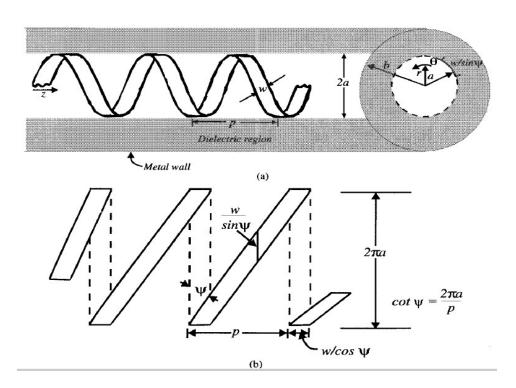
³Air Force Research Laboratory, Kirtland, NM

8th MIPSE Graduate Student Symposium
18 October 2017

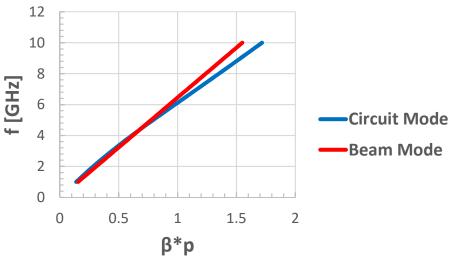
*Work supported by AFOSR FA9550-15-1-0097, FA9550-14-1-0309, AFRL FA9451-14-1-0374, ONR N00014-16-1-2353, and L-3 Technologies.

Motivation

- In a helix Traveling-Wave Tube (TWT) that has a bandwidth exceeding one octave, the second harmonic of the input signal could be amplified
- General interest in harmonic generation in bunched beams



Dispersion Diagram for Helix TWT



Question: What is the harmonic content?

TWT Harmonic Content: Sources

[A] From linear orbits (charge overtaking, like in a klystron*)

[B] From non-linear orbits (e.g. ' $v_1 \frac{\partial v_1}{\partial z}$ ' term in force law)

Turns out that [B] is much more important for harmonic generation

Reason: $v_1 \frac{\partial v_1}{\partial z} \propto e^{j(2\omega_0)t-j(2k_0)z}$ so that it drives resonantly in time *and* in space, i.e., $v_{ph(2)} = \frac{2\omega_0}{2k_0} = \frac{\omega_0}{k_0} \approx v_0$, the condition for synchronism.

^{*}C.F. Dong, P. Zhang, D. Chernin, Y.Y. Lau, B. W. Hoff, D.H. Simon, P. Wong, G. B. Greening, and R. M. Gilgenbach, "Harmonic Content in the Beam Current in a Traveling-Wave Tube," *IEEE T-ED, VOL. 62, p. 4285* (2015).

The Electronic Equation

$$\left(\frac{\partial}{\partial t} + v(z, t) \frac{\partial}{\partial z}\right) v(z, t) = -\frac{e}{m_e} E(z, t)$$

$$v(z,t) \equiv \frac{Ds}{Dt} = \left(\frac{\partial}{\partial t} + v(z,t)\frac{\partial}{\partial z}\right)s(z,t)$$

Expand:

$$s = s_0 + \varepsilon s_1 + \varepsilon^2 s_2 + \cdots,$$

$$v = v_0 + \varepsilon v_1 + \varepsilon^2 v_2 + \cdots,$$

$$E = E_0 + \varepsilon E_1 + \varepsilon^2 E_2 + \cdots$$

 ε is an expansion parameter in harmonics

The Electronic Equation

- ε^0 : DC state
- ε^l : Linearized force law

•
$$\left(\frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial z}\right) v_1(z, t) = -\frac{e}{m_e} E_1(z, t)$$

•
$$v_1(z,t) = \left(\frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial z}\right) s_1(z,t)$$

• ε^2 : 2nd harmonic generation

•
$$\left(\frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial z}\right) v_2(z, t) = -\frac{e}{m_e} E_2(z, t) - v_1 \frac{\partial v_1}{\partial z}$$

•
$$v_2(z,t) = \left(\frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial z}\right) s_2(z,t) + v_1 \frac{\partial s_1}{\partial z}$$

Note: Second harmonic is generated. It is phase-controlled by the input signal at the fundamental frequency.

The Electronic Equation (Continued)

• Write the n^{th} harmonic in E(z,t) as:

•
$$E_n(z,t) = E_{Cn}(z,t) + E_{SCn}(z,t)$$

= $\widetilde{E_{C(n)}}(z)e^{j(n\omega_0)t} + \frac{4(n\omega_0)^2QC_{(n)}^3s_{(n)}^{\sim}(z)e^{j(n\omega_0)t}}{e/m_e}$

- E_{Cn} = Circuit electric field
- E_{SCn} = Space-charge electric field

The Circuit Equation

Excitation of circuit wave:

$$\left(\frac{d}{dz} + \Gamma_{(n)}\right) \widetilde{E_{C(n)}}(z) = \frac{j}{v_0} \frac{m_e}{e} (n\omega_0)^3 C_{(n)}^3 \widetilde{S_{(n)}}(z),$$

$$\Gamma_{(n)} = j\beta_{p(n)} + \beta_{e(n)}C_{(n)}d_{(n)}$$

$$\beta_{p(n)} = \frac{n\omega_0}{v_{ph(n)}} = \text{cold circuit wavenumber}$$

$$\beta_{e(n)} = \frac{n\omega_0}{v_0} = \text{electronic wavenumber}$$

$$C_{(n)} = \text{Pierce's gain parameter}$$

$$d_{(n)} = \text{Pierce's loss parameter}$$

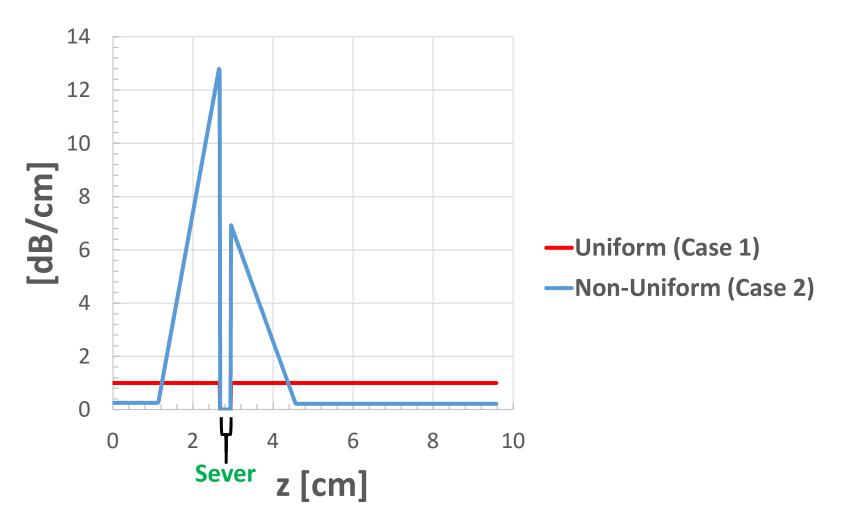
Test Cases

• Helix TWT with a mid-stream sever (2.667 < z < 2.921 cm)

Circuit Parameters						
n	$n^*\omega_0$	K	C	QC	b	
1	$2\pi(4.5 \text{ GHz})$	111.27Ω	0.116	0.281	0.337	
2	2π(9 GHz)	8.97Ω	0.050	1.053	2.961	

Beam Parameters						
V_b	I_0	P_b	$I_0/V_b^{3/2}$			
3.0 kV	0.17 A	$V_b I_0 = 510 \text{ W}$	1.035 μΡ			

Test Cases Resistive Loss as a function of z



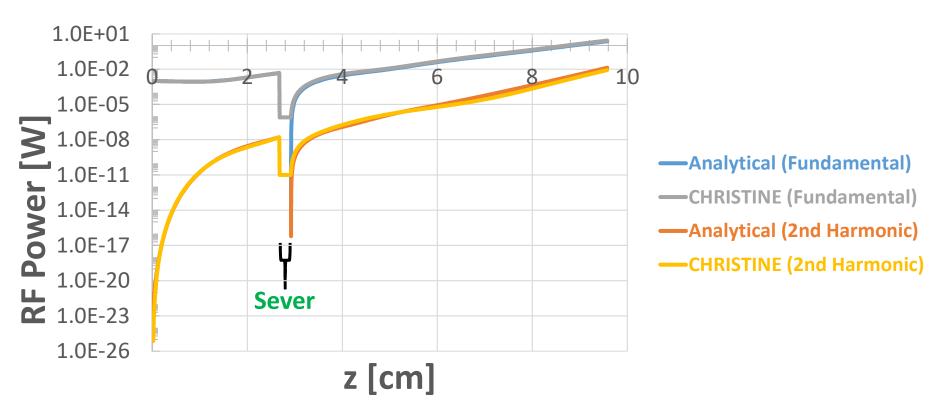
Initial/Boundary Conditions

• The governing equations in each region are solved subject to the appropriate initial/boundary conditions:

Pre-sever Pre-sever					
Fundamental (n=1)	2 nd Harmonic (n=2)				
$\widetilde{s_{(1)}}(z=0)=0$	$\widetilde{s_{(2)}}(z=0)=0$				
$\widetilde{v_{(1)}}(z=0)=0$	$\widetilde{v_{(2)}}(z=0)=0$				
$\widetilde{E_{(1)}}(z=0) = E_{10}$	$\widetilde{E_{(2)}}(z=0)=0$				
Sever					
Fundamental (n=1)	2 nd Harmonic (n=2)				
$\widetilde{s_{(1)}}(z^- = 2.667 \text{ cm})$	$\widetilde{s_{(2)}}(z^- = 2.667 \text{ cm})$				
$=\widetilde{s_{(1)}}(z^+=2.667~{ m cm})$	$=\widetilde{s_{(2)}}(z^+=2.667 \text{ cm})$				
$\widetilde{v_{(1)}}(z^- = 2.667 \text{ cm})$	$\widetilde{v_{(2)}}(z^- = 2.667 \text{ cm})$				
$=\widetilde{v_{(1)}}(z^+=2.667~{ m cm})$	$=\widetilde{v_{(2)}}(z^+=2.667 \text{ cm})$				
$\tilde{E}(z) \equiv 0 \ \forall z$					
Post-sever Post-sever					
Fundamental (n=1)	2 nd Harmonic (n=2)				
$\widetilde{s_{(1)}}(z^- = 2.921 \text{ cm})$	$\widetilde{s_{(2)}}(z^- = 2.921 \text{ cm})$				
$=\widetilde{s_{(1)}}(z^+=2.921~{ m cm})$	$=\widetilde{s_{(2)}}(z^+=2.921 \text{ cm})$				
$\widetilde{v_{(1)}}(z^- = 2.921 \text{ cm})$	$\widetilde{v_{(2)}}(z^- = 2.921 \text{ cm})$				
$=\widetilde{v_{(1)}}(z^+=2.921\mathrm{cm})$	$=\widetilde{v_{(2)}}(z^+ = 2.921 \text{ cm})$				
$\widetilde{E_{(1)}}(z=2.921~\text{cm})=0$	$\widetilde{E_{(2)}}(z = 2.921 \text{ cm}) = 0$				

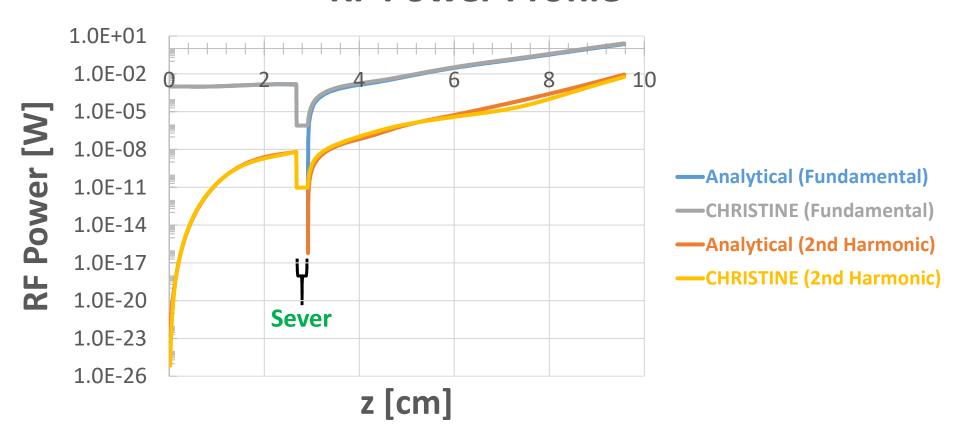
Case 1: Uniform Cold-Tube Loss (1 dB/cm attenuation)

RF Power Profile

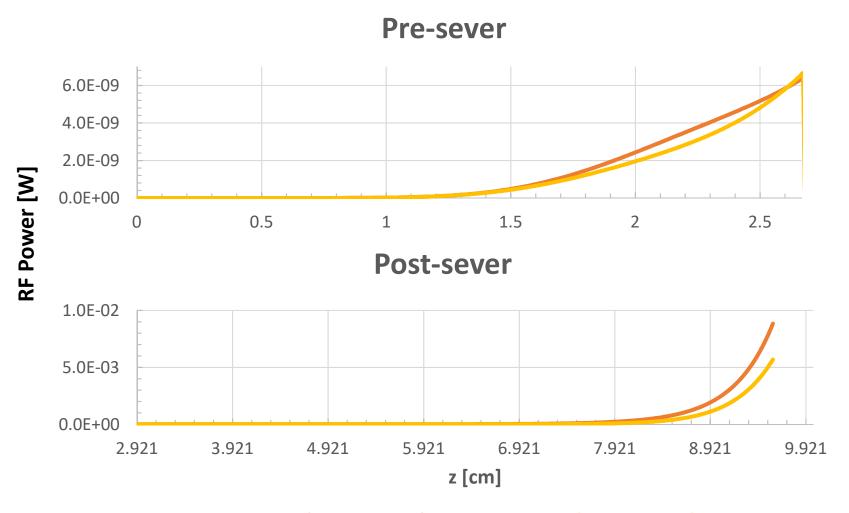


Case 2: Non-Uniform Cold-Tube Loss

RF Power Profile



Results: In Linear Scale RF Power Profile



Conclusions

- A wideband TWT may have the $2^{\rm nd}$ harmonic within its amplification band and hence gain at this $2\omega_0$ frequency with input only at the fundamental ω_0
- The non-linear orbital terms, leading to $e^{j(2\omega_0)t-j(2k_0)z}$ resonantly interact with the beam mode at second harmonic, $(2\omega_0)/(2k_0) = v_0$
- The analytical formulation of the equations governing the evolution of this 2nd harmonic was found, including effects of spatial taper
- Reasonable agreement between the analytic theory and simulations using the CHRISTINE code was observed