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Multipactor [1,2] is a nonlinear phenomenon in which an electron - effect of n
avalanche driven by a high frequency rf field sustains itself by an
exponential charge growth through secondary electron emission * Single Frequency - E, and 6 oscillates at twice the rf frequency [3]

from a metallic or dielectric surface. i | | | E; = first crossover point *n=2,=1,y=0,m > E, and § oscillates at four times the rf

« Secondary electron yield () depends on primary electrons’ impact - effect of ¥
energy and impact angle [6].

E.fduat = 3MV/m,f; = 1GHz, f; = 1.25GHz
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» Susceptibility boundary relatively
insensitive to the frequency ratio,
Multipactor causes breakdown of dielectric windows, erosion of s ~ E, = second crossover point frequency [7] n, forn = 1.25,1.5

metallic structures, melting of internal components, and perforation | ﬂ Impact energy between E, and E, n=28=17y=mn/2 > E, and § oscillates at three times the rf - Temporal profile of E,

of vacuum walls, etc. , > SEY > 1 - charge growth frequency | , L significantly changes with respect

Study of the time-dependent physics [3] offers a better | SEY model used: Vaughan’s model Byt = 3MV/m £y = 1GH, £, = 1. 5GHz ton

understanding of the multipactor dynamics. * [6] iy & & ()] ° Beat waves are produced in the
I / | | temporal profiles of E,

AM V] - Frequency domain analysis
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_ _ Temporal study of dual tone multipactor | M L. < required to resolve the frequency
Dual tone smgle surface multlpactor -Time spent by E, in small and large loops S components of E,

RF FieId%Ey = [E‘rf sin(wt + 6) + ,Bgrf sin(n(wt + 6) + V)] Vaughan S MOdeI Of SEY [6] RF field Time spent (ns) Time averaged
configuration in growth (decay) regime normal electric ConCI USion
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Y 8 = 6pqy(Wel™)k w < 3.6

>

0.56, w<1 in large loops in small loops | WG Ex(MV/m) : o .o
B = relative strength of the 2 carrier mode 5 =05, .(1.125/wo35) w > 3.6 025, 1=w=3.6 For dual tone operation of the rf electric field, the normal electric field

v = relative phase of the 2d carrier mode | Single tone 0.2 (0.8) 0 (0) 0.9 oscillates at higher frequency than that for the single tone operation of
n = frequency ratio between the two carrier W = E;/Epax 2 o Eax0 = |mp§ct energy for 6,maxo n=2=1,%=0 0.13(0.54) 0.17 (0.16) 0.756 the rf electric field. o |

modes (need NOT be an integer) E _=FE_ <1 L Kord ) * Omaxo = Maximum ylel_d at Dual =2 8=1,y,=m/2 0.08(0.25) 0.21 (0.46) 0.775 The time averaged normal electric field E, (corresponding to

¢ = initial angle of electron flight 21 impact angle ¢ =0 L ey e —— (054) 017 (0.16) 0.7501 multipactor strength) is decreased compared to the single tone

v, = initial velocity Ks&2 E; = impact energy of macroparticle operation for the dual- tone case with total rf power equal to the
¢ = impact angle 2 ks, kss = surface smoothness single tone case.

—_— factors (k. = k.5 = 1 used i - -
E,.= normal electric field (fesk s6 ) . growth time in small loops > growth time in large loops Non-integer freque_ncy ratio between the two carrier modes p_rod_uces
. growth rate in small loops < growth rate in large loops beat wave pattern in the temporal profile of the normal electric field.
J Multipactor particle trajectories can be controlled by controlling

: : * lower electron population for a longer duration during an rf period [7] arameters and v of the second carrier mode
MUItlpartlde Monte Carlo (MC) Model » Time averaged normal electric field E, (multipactor strength) reduced P n.f,andy '

Monte Carlo Simulation Multiparticle MC model [7]- = with the same rf power as the single tone case

= large number of macroparticles

Distributions of random emission energy & angle [4' 5]- = humber of maCFOPartiCIES kept fixed x ) 211 : ) FUtU re WO rk
E, (Lo (N = 200) : . . .
f(EO) — EToe (EOm) = charge Tal the impacting macroparticle N N\ 3‘:3 TempOraI StUdy Of dual tOne mUItIpaCtOr Fl‘equenCY dOmaln ana|YSIS Of the dual tone S|n9|e Surface

0 . . . . I
1 changed and normal electric field : .= 7 - analyzing macroparticle trajectories multipactor - iNUSOI
9(@) = 5 Sing updated at each impact Temporal study for different non-sinusoidal rf waveshapes

= time intervals between subsequent single tone o dual tone (4=1,n=2,7=r/2) Study of multi-frequency operation

bounces of particles on the surface
calculated exactly

E,ssin(wt + 0) >

BE ,ssin(n(wt + 6) + )

Omax = Omaxo (1 + _
 Dual tone operation—>
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E,= random emission energy
Ey,,= peak of the distribution of emission energies
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Temporal study of dual tone multipactor
=—Jel [Erf sin(wt + 0) + ,Bﬁrf sin(nwt + 6 + ) + Ey ] - effect of y
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