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Scaling relativistic laser-solid interaction using 30fs laser pulses

• Incident and reflected laser pulses form a standing wave region to accelerate 

electrons [1, 2]. Direct laser acceleration further boost their energy [3].

• Relativistic electrons from solid targets have superior properties in beam 

charge and divergence than those from underdense plasmas.

• Relativistic electron bunches of attosecond duration can be generated [4].

• Potential applications: Warm dense matter creation, Electron radiography, 

Seed of wakefield accelerators, Fast ignition researches.

• In this work, we present:

• Angular dependence

• Prepulse and target material effect

• Attosecond electron bunches
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Fig.2 shows the attosecond electron bunches generated in 

the PIC simulation in a grazing incidence geometry (76°) at 

specular reflection direction. The bunch has an energy of 

~5MeV and thickness ~𝜆/10. The bunches repeat every laser 

cycle while the electrons excited by the laser field (lower 

energy) repeat every half cycle.
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Fig.1 Experimental 

setup. F1 parabola: Off-

axis paraboloid at 60°

or 90°; Pellicle: 2 µm 

thick nitrocellulose 

pellicle; laser pulse is at 

12 mJ, 30fs, 800nm, p-

polarized. IP: FUJI 

BAS-SR 2025 image 

plate.

• Focused the laser beam onto a thick glass target at normal and grazing 

incidence.

• Recorded the spatial profile of the emitted electron beam on a stack of 

image plates at grazing exit and along the beam path.

• Tuned the prepulse delay [5] and angle of incidence.

• Performed two-dimensional Particle-In-Cell (PIC) simulation using OSIRIS 

framework [6].
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Fig.4 compares different angle of incidence from both 

experiment (right) and simulation (left).The 

experiment was taken by 60° OAP without prepulse. 

Angular distribution of electron energy spectra is 

simulated in normal incidence, grazing incidence(Fig. 

4a) and 45° incidence (Fig. 4b).

• Short-pulse laser solid interaction produces attosecond electron bunches. It’s 

angle of exit is close to the specular reflection direction. It is observed in 76° and 

45° incidence but not normal incidence in simulations and is observed in grazing 

incidence but not normal incidence in experiments. 

• Attosecond electron bunch generation favors larger angle of incidence.

• Angle of incidence is tuned for the angular distribution of electron energy spectra.

• Prepulse delay is included to find higher energy bump at 20ps from experiments. 

Simulations need to be done.
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Fig.3 presents the electron energy spectra 

captured at different direction from 

simulation (left) and experiment (right), all at 

grazing incidence. The experiment was 

carried out using a 60° OAP, with and 

without prepulse. Spectrometer positions are 

labeled in the geometry drawing.

Fig.5

Fig.5 shows the electron energy spectra with and 

without including a 20ps prepulse. The laser pulses 

were focused by a 60° OAP at grazing incidence, 

and the spectra were also taken at grazing 

incidence. With the prepulse, the “bump” moves 

towards high energy on the spectrum.
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Fig.6 presents the electron energy spectra 

obtained using different targets. The laser pulses 

were focused by a 60° OAP at grazing incidence 

without prepulse, and the spectra were also taken 

at grazing incidence. 
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