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AGENDA 

• Plasma synthesis of nanoparticles 
• Model description 
• Base case particle growth results 

• SiH4 / Ar plasma 
• SiH4/ Ar / He plasma 

• Concluding remarks 
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PLASMA SYNTHESIS OF NANOPARTICLES 

• Plasma nanoparticle synthesis has 
become a viable alternative to 
traditional synthesis methods.  

• Nanoparticles grown in plasma have 
a wide array of properties tunable by 
changing plasma conditions (i.e. 
power, flow rate, etc.) 

•  CCP or ICP can be used. 
• Synergistic effects of growing 

particles in plasma are not well 
understood.  
 

U. Kortshagen. Plasma Chem. 
Plasma Process. 36,73 (2016).   
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MODELING CHALLENGES 

• Previous models utilize a sectional method 
developed by the Aerosol Physics 
community. 

• Sectional models bin particles by size and 
solve population balance for each size 
section. 

• Sectional models are usually 0-dimensional 
and at best 1-dimensional models. 

• Models provide high level of detail, but are 
computationally intensive when 
implemented in 2D. 

• In this work we implement a 2D particle 
growth model directly into an existing fluid 
code in an attempt to overcome 
computational challenges. 

 
 
 
 
 
 

P. Agarwal and S.L. Girshick. Plasma Src. Sci. Technol. 
21,5 (2012) 
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HYBRID PLASMA EQUIPMENT MODEL 

• The Hybrid Plasma Equipment Model (HPEM) is a modular 
simulator that combines fluid and kinetic approaches. 

• Particle growth algorithms added to fluid modules. 
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MODEL CHANGES  
• NPs included in reaction mechanism 

as species with variable mass.  
• Change in mass based on net 

reactive fluxes,  
 

 
 

 

 
 

• Prior algorithms assumed constant 
species mass. 

• Significant code changes required to 
implement.  
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BASIC Ar/SiH4 REACTION MECHANISM FOR Si NPs 
• Species 
• Ar, Ar(1s5), Ar(1s4), Ar(1s3), Ar(1s2), Ar(4p), Ar(4d), Ar+, e 
• Si, SiH2, SiH3, SiH4, SiH3

+, SiH2
-, SiH3

- 

• Si2H2, Si2H3, Si2H5, Si2H6, Si2H5
- 

• H2, H2*, H, H*, H+ 

• NP – the nanoparticle species 
• NP growth reactions – now only considering neutral nanoparticles. 

• Si2Hn + SiHn → NP 
• SiHn + NP → (bigger) NP + Hn 

• Mechanism to be refined to include 
• H2(v), SiH4(v), Si, Si2, SiHn

+, SinHm
- 

• More complete nucleation kinetics 
• Charged particle based growth in fluid approach. 
• DU temperature based on surface reactions 

University of Michigan 
Institute for Plasma Science & Engr. 
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REACTOR GEOMETRY 

• Based on (prior) Kortshagen 
reactor. 

• ICP, cylindrical quartz tube, 3 
coils, 10 MHz, 1 W 

• Negligible NP particle density 
• Ar/SiH4 = 99/1.0, 800 mTorr 
• 28 species, 186 reactions 
• 4 particle growth reactions 

1 



BASE CASE PLASMA PROPERTIES 

• High negative ion density due to high rate of SiH4 dissociation 
and electron attachment. 

Power 
0-0.03 W-cm-3 

Te 
1- 4 eV 

ne, logscale 
7.2 x 108 cm-3 

Ar+, logscale 
7.9 x 109 cm-3 

N-, logscale 
1.6 x 1010 cm-3 

University of Michigan 
Institute for Plasma Science & Engr. 
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BASE CASE PARTICLE GROWTH 
Mass Density, 

logscale 
4.1 x 108

 amu-cm-3 

Particle Mass, 
logscale 

7.9 x 104
 amu 

Particle Diameter 
4.7 nm 

Animation Slide 

• NP starts as Si3  
• Initial growth 

mechanism: 
    Si2H2 + SiHn → NP 
    SiHn +NP → NP + nH 
• Decreasing nucleation 

rate with increasing n 
• Neutral NPs form near 

surfaces due to longer 
residence time and lower 
axial density by gas 
heating.  



μ 

1000 
mTorr 

600 
mTorr 

μ 

1W 

3W 

5W 

10W 
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POWER AND PRESURE DEPENDENCE 

• Vary pressure with power = 1W 
• Vary power with pressure = 800mTorr 
• Increase in NP size  

• With pressure due to longer residence time. 
• With power due to higher radical densities.  

 
 
 

• Ar/SiH4 = 99/1.0, 800 mTorr, 1 W, 5 sccm 



μ 

0.1% SiH4 

10% SiH4 

1.0% SiH4 

μ 
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INLET FRACTION AND NUCLEATION RATE 

• Ar/SiH4 = 99/1.0, 800 mTorr, 1 W, 5 
sccm 

• Higher rates of nucleation have 
higher initial growth rates. 

• Average NP diameter will saturate 
when precursors are depleted. 

• High inlet fraction leads to higher 
growth rates – simply more 
precursors that are not depleted. 
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Ar/He/SiH4 = 75/24/1: PLASMA PROPERTIES 

• Small changes in plasma properties. 

Power 
0-0.03 W-cm-3 

Te 
1- 4.3 eV 

ne, logscale 
9.7 x 108 cm-3 

Ar+, logscale 
9.1 x 109 cm-3 

N-, logscale 
1.8 x 1010 cm-3 



Mass Density, 
logscale 

2.8 x 108 amu-cm-3 

Particle Mass, 
logscale 

3.3 x 104 amu-cm-3 

Particle Diameter 
3.7 nm, 0.5 ms 

PARTICLE GROWTH: Ar/He/SiH4 = 75/24/1 

• Growth patterns are 
similar to Ar/SiH4 
mixtures.  

• Larger areas of 
nucleation due to 
higher ion 
concentration and 
rate of SiH4 
dissociation.  

• Addition of He 
expected to have 
higher particle growth 
rate.  

Animation Slide 
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HELIUM DILUTION: NANOPARTICLES 

• Radius = 1.25 cm 
• Highest NP densities occur upstream of coils (larger height) 

where SiH4 density and radical densities are higher.  
• Addition of He slightly increases ion and NP concentration, but 

otherwise has no significant effect on bulk plasma properties.   
 
 
 
 
 

• Ar/SiH4 = 99/1.0 • Ar/He/SiH4 = 75/25/1.0 
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CONCLUDING REMARKS 
• A particle growth model was developed and implemented into 

existing HPEM structure. 
• The neutral channel for NP growth occurs dominantly near walls 

where residence times are longer. 
• Addition of He as an inlet gas does not significantly change bulk 

plasma properties while changing ion composition.  
• Addition of He is expected to yield higher particle growth rates 

due to higher rate of SiH4 dissociation leading to higher 
precursor radical concentrations.  

• Mechanism to be refined to include 
• H2(v), SiH4(v), Si, Si2, SiHn

+, SinHm
- 

• More complete nucleation kinetics 
• Charged particle based growth in fluid approach 



University of Michigan 
Institute for Plasma Science & Engr. 

Ar/He/SiH4 = 75/24/1.0 MIXTURES 

• 20 cm height, 2.5 cm radius 
• Cylindrical quartz tube 
• 5 sccm Ar/He/SiH4 0.75 / 0.24 / 0.01 

inlet flow 
• One coil set, three turns  
• 1W deposited power, 10MHz 

frequency 
• 800mTorr 
• Initial particle density ~ 0 cm-3 
• 39 species, 307 reactions 
• 4 particle growth reactions 

 
 
 



μ 

5W 

3W 

1W 

5W 

3W 

1W 

7W 

University of Michigan 
Institute for Plasma Science & Engr. 

 
 
 
 
 

 
 
 
 
 

Ar/He/SiH4 = 75/24/1.0 MIXTURES: POWER 

•As in the case of Ar/SiH4 , growth rate 
increases with increasing power.  
•Compared to Ar/SiH4, addition of He 
lowers growth rate at lower powers. 

•Multiple pathways for dissociation 
lead to higher positive ion (N+) 
concentration while negative ion 
concentration remains same.  
•Longer time needed for precursor 
species creation until N- 
concentration balances N+ 
concentration.  
 

•Expect that after a longer time, addition 
of He will increase growth rate, as in the 
5W case.  
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