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PLASMA SYNTHESIS OF NANOPARTICLES

Plasma nanoparticle synthesis has
become a viable alternative to
traditional synthesis methods.

Nanoparticles grown in plasma have
a wide array of properties tunable by
changing plasma conditions (i.e.
power, flow rate, etc.)

CCP or ICP can be used.

Synergistic effects of growing
particles in plasma are not well
understood.

Ar, SiH,, GeH,,
I PH, or B;Hg (with H,)
| adjust flow rates for composifion

nonthermal plasma
free standing spherical NCs

rectangular nozzle
focuses particle path
controls pressure

s impinging
5 / SiGe NC beam
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substrate mounted
on moveable pushrod
multiple samples fabricated
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MODELING CHALLENGES

1011 3

e Previous models utilize a sectional method .|

10

developed by the Aerosol Physics b xmzem
community. |

time=1s

)

e Sectional models bin particles by size and
solve population balance for each size

dN/d(log(d

section. ol
e Sectional models are usually O-dimensional '] |||““HH

and at best 1-dimensional models. 10° Siarmel?. 10°
iameter, nm
e Models provide high level of detail, but are 4y, o _ [de.‘k] [dN_;.J_]
computationally intensive when dr MU fe Ldr
implemented in 2D. L [Nk L [ 9Nk
di growth dr charging

e In this work we implement a 2D particle
growth model directly into an existing fluid
code in an attempt to overcome
computational challenges.

P. Agarwal and S.L. Girshick. Plasma Src. Sci. Technol. : : —
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HYBRID PLASMA EQUIPMENT MODEL
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e The Hybrid Plasma Equipment Model (HPEM) is a modular
simulator that combines fluid and kinetic approaches.

e Particle growth algorithms added to fluid modules.
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MODEL CHANGES

NPs included in reaction mechanism . .
{ Diffusion Coefficients, J

as species with variable mass. Mobilities
Change in mass based on net l
reactive fluxes, [
Momentum ]4—
dm.
I _ SN, (+Am,,) }
dt ik [ Number Density ]—

i (6ny j1/3 l
! P7T [ Mass Density
'

) S

Prior algorithms assumed constant _

species mass. 4' Particle Mass ]—
Significant code changes required to l
implement. | Particle Size ]
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BASIC Ar/SiIH,; REACTION MECHANISM FOR Si NPs

e Species
o Ar, Ar(1s;), Ar(1s,), Ar(ls,), Ar(1s,), Ar(4p), Ar(4d), Ar*, e
e Si, SiH,, SiH,, SiH, SiH;*, SiH,", SiH;’
e Si,H,, Si,H;, Si,Hg, Si,Hg, Si,He
e H,, H*, H, H*, H*
e NP —the nanoparticle species

e NP growth reactions — now only considering neutral nanoparticles.
e Si,H, + SiH, -> NP
e SiH, + NP — (bigger) NP + H,
e Mechanism to be refined to include
o H,(V), SiH4(Vv), Si, Si, SiH,*, Si H,
e More complete nucleation kinetics

e Charged particle based growth in fluid approach.
e DU temperature based on surface reactions
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REACTOR GEOMETRY

Height (cm)
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Based on (prior) Kortshagen
reactor.

ICP, cylindrical quartz tube, 3
coils, 10 MHz, 1 W

Negligible NP particle density
Ar/SiH, = 99/1.0, 800 mTorr
28 species, 186 reactions

4 particle growth reactions
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BASE CASE PLASMA PROPERTIES
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e High negative ion density due to high rate of SiH, dissociation
and electron attachment. University of Michigan
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BASE CASE PARTICLE GROWTH

Particle Diameter
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NP starts as Si,

Initial growth
mechanism:

Si,H, + SiH, &> NP
SiH, +NP — NP + nH

Decreasing nucleation
rate with increasing n

Neutral NPs form near
surfaces due to longer
residence time and lower
axial density by gas
heating.
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Average NP Diameter (nm)

POWER AND PRESURE DEPENDENCE
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e Vary pressure with power = 1W
e Vary power with pressure = 800mTorr
e Increase in NP size

e With pressure due to longer residence time.
e With power due to higher radical densities.

e Ar/SiH, =99/1.0, 800 mTorr, 1 W, 5 sccm University of Michigan
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Average NP Diameter (nm)

Average NP Diameter (nm)

INLET FRACTION AND NUCLEATION RATE
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e Higher rates of nucleation have
higher initial growth rates.

e Average NP diameter will saturate
when precursors are depleted.

e High inlet fraction leads to higher
growth rates — simply more
precursors that are not depleted.

e Ar/SiH, =99/1.0, 800 mTorr, 1 W, 5
sccm
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Ar/He/SiIH, = 75/24/1: PLASMA PROPERTIES
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e Small changes in plasma properties.
T — University of Michigan
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PARTICLE GROWTH: Ar/He/SIH, = 75/24/1

. : Particle Mass, Mass Density,
Particle Diameter
3.7 nm. 0.5 ms Iog43ca|e . Iogsscale .
N 3.3 x 107 amu-cm™ - 2.8 10" amu-cm e Growth patterns are
* similar to Ar/SiH,
mixtures.
e Larger areas of
15 15 ]— .
| nucleation due to
: higher ion
- ) concentration and
Z 0 - rate of SiH,
£ 1 dissociation.

e Addition of He
expected to have
higher particle growth
rate.

Animation Slide
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NP Density cm™

HELIUM DILUTION: NANOPARTICLES

e Ar/SiH, = 99/1.0

2.0E+05 -
) NP
SiH, g
1.5E+05 |
1.0E+05/
5.0E+04 |
v
/

/

L | | | h | L | 1 L L | I |
0.0E+00; 5 10 15

Height (cm)
e Radius =1.25cm

=10

-
o
©

-
o
C)

—
o
)

10°

W0 Alsuag
NP Density (cm™)

2.0E+05

1.5E+05

1.0E+05

5.0E+04 -

0.0E+00

* Ar/He/SiH, = 75/25/1.0

SiH, NP -]

- 10°

:103

7107

15
Height (cm)

e Highest NP densities occur upstream of coils (larger height)
where SiH, density and radical densities are higher.

e Addition of He slightly increases ion and NP concentration, but
otherwise has no significant effect on bulk plasma properties.

(¢-wo) Aysueqg
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CONCLUDING REMARKS

e A particle growth model was developed and implemented into
existing HPEM structure.

e The neutral channel for NP growth occurs dominantly near walls
where residence times are longer.

e Addition of He as an inlet gas does not significantly change bulk
plasma properties while changing ion composition.

e Addition of He is expected to yield higher particle growth rates
due to higher rate of SiH, dissociation leading to higher
precursor radical concentrations.

e Mechanism to be refined to include
e H,(v), SiH,(v), Si, Si, SiH.*, Si H,
e More complete nucleation kinetics
e Charged particle based growth in fluid approach
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Ar/Hel/SiH, = 75/24/1.0 MIXTURES

Rate of Reaction

20 cm height, 2.5 cm radius Process (em¥/s)
Cylindrical quartz tube Attachment 10~
. Detachment 10-10
5 sccm Ar/He/SiH, 0.75/0.24/0.01 -
: Neutralization 107 -108
inlet flow
_ Charge Exchange 10-11
One coil set, three turns Hydrogen Elimination  10°
1W deposited power, 10MHz Dissociation by He 107 - 107
frequency Dissociation by Ar 1010 — 10-11
800mTorr Nucleation 10”7
Growth 1010 — 10-12

Initial particle density ~0cm-3
39 species, 307 reactions
4 particle growth reactions
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Ar/Hel/SiIH, = 75/24/1.0 MIXTURES: POWER

2.0E+05 — =10

eAs in the case of Ar/SiH, , growth rate

iIncreases with increasing power.

eCompared to Ar/SiH,, addition of He

lowers growth rate at lower powers.
eMultiple pathways for dissociation
lead to higher positive ion (N*)
concentration while negative ion

508404 1L 45. S 7Y concentration remains same.
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