REACTOR SCALE MODELING OF NANOPARTICLE GROWTH IN LOW TEMPERATURE PLASMAS*

Jordyn Polito, Steven Lanham, and Mark J. Kushner
University of Michigan, Ann Arbor, MI
jopolito@umich.edu, mjkush@umich.edu

Himashi Andaraarachchi, Zhaohan Li, Zichang Xiong, and Uwe R. Kortshagen
University of Minnesota, Minneapolis, MN

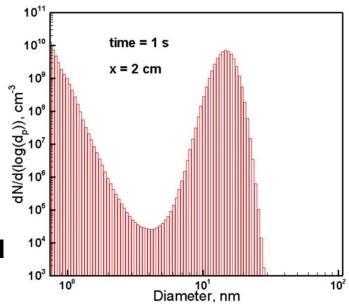
Michigan Institute for Plasma Science and Engineering Symposium November 13th, 2019

 This work was supported by Army Research Office MURI Grant W911NF-18-1-0240 and the Department of Energy Office of Fusion Energy Science.

AGENDA

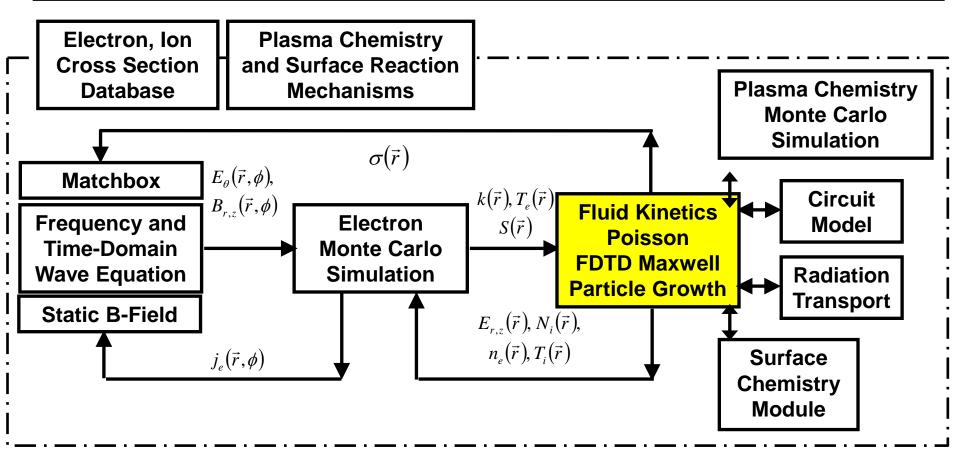
- Plasma synthesis of nanoparticles
- Model description
- Base case particle growth results
 - SiH₄ / Ar plasma
 - SiH₄/ Ar / He plasma
- Concluding remarks

PLASMA SYNTHESIS OF NANOPARTICLES


- Plasma nanoparticle synthesis has become a viable alternative to traditional synthesis methods.
- Nanoparticles grown in plasma have a wide array of properties tunable by changing plasma conditions (i.e. power, flow rate, etc.)
- CCP or ICP can be used.
- Synergistic effects of growing particles in plasma are not well understood.

U. Kortshagen. *Plasma Chem. Plasma Process.* 36,73 (2016).

MODELING CHALLENGES

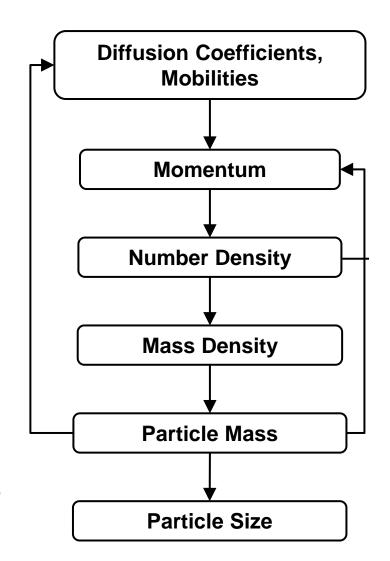

- Previous models utilize a sectional method developed by the Aerosol Physics community.
- Sectional models bin particles by size and solve population balance for each size section.
- Sectional models are usually 0-dimensional and at best 1-dimensional models.
- Models provide high level of detail, but are computationally intensive when implemented in 2D.
- In this work we implement a 2D particle growth model directly into an existing fluid code in an attempt to overcome computational challenges.

$$\frac{dN_{j,k}}{dt} + \nabla\Gamma_{j,k} = \left[\frac{dN_{j,k}}{dt}\right]_{\text{nuc}} + \left[\frac{dN_{j,k}}{dt}\right]_{\text{coag}} + \left[\frac{dN_{j,k}}{dt}\right]_{\text{growth}} + \left[\frac{dN_{j,k}}{dt}\right]_{\text{charging}}$$

P. Agarwal and S.L. Girshick. *Plasma Src. Sci. Technol.* 21,5 (2012)

HYBRID PLASMA EQUIPMENT MODEL

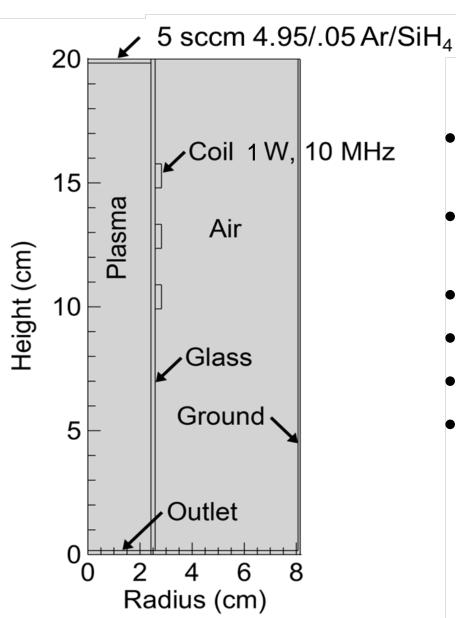
- The Hybrid Plasma Equipment Model (HPEM) is a modular simulator that combines fluid and kinetic approaches.
- Particle growth algorithms added to fluid modules.


MODEL CHANGES

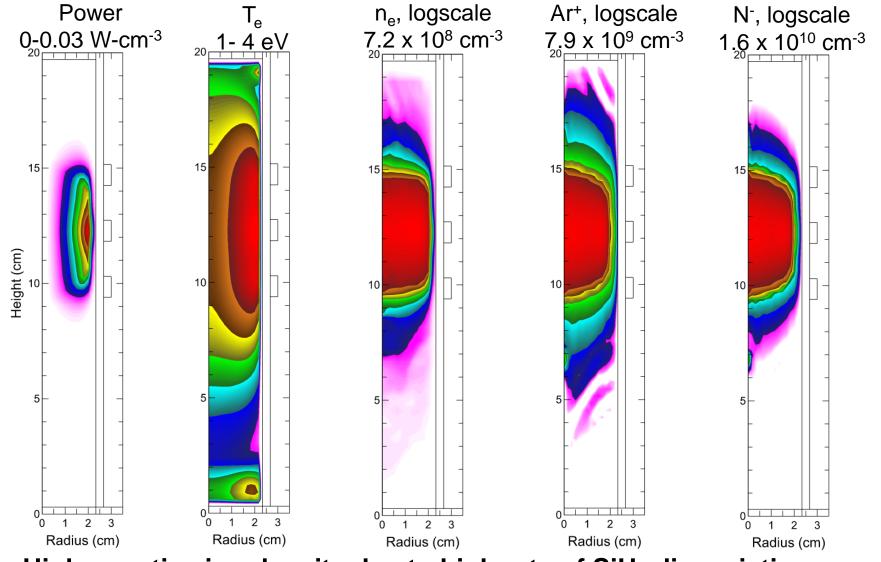
- NPs included in reaction mechanism as species with variable mass.
- Change in mass based on net reactive fluxes,

$$\frac{dm_i}{dt} = \sum_{j,k} k_{jk} N_j \left(\pm \Delta m_{jk} \right)$$

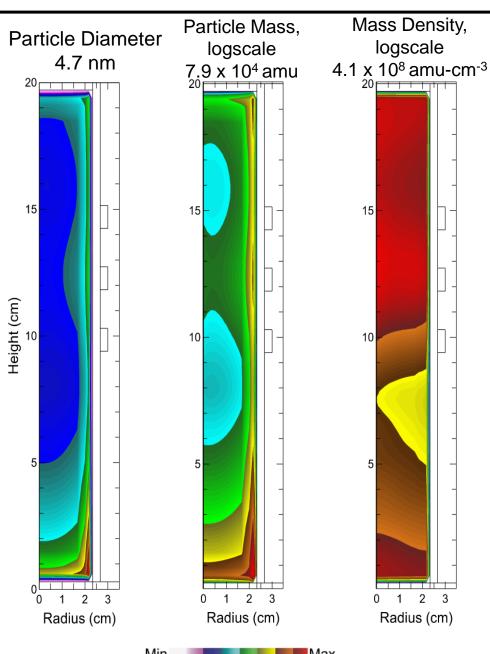
$$d_i = \left(\frac{6m_i}{\rho\pi}\right)^{1/3}$$


- Prior algorithms assumed constant species mass.
- Significant code changes required to implement.

BASIC Ar/SiH₄ REACTION MECHANISM FOR Si NPs


- Species
 - Ar, Ar(1s₅), Ar(1s₄), Ar(1s₃), Ar(1s₂), Ar(4p), Ar(4d), Ar⁺, e
 - Si, SiH₂, SiH₃, SiH₄, SiH₃+, SiH₂-, SiH₃-
 - Si₂H₂, Si₂H₃, Si₂H₅, Si₂H₆, Si₂H₅
 - H₂, H₂*, H, H*, H+
 - NP the nanoparticle species
- NP growth reactions now only considering neutral nanoparticles.
 - $Si_2H_n + SiH_n \rightarrow NP$
 - SiH_n + NP → (bigger) NP + H_n
- Mechanism to be refined to include
 - H₂(v), SiH₄(v), Si, Si₂, SiH_n+, Si_nH_m-
 - More complete nucleation kinetics
 - Charged particle based growth in fluid approach.
 - DU temperature based on surface reactions

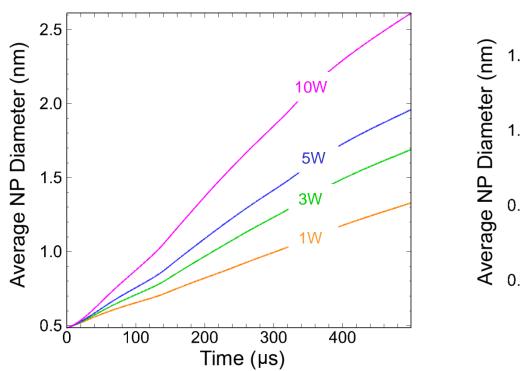
REACTOR GEOMETRY

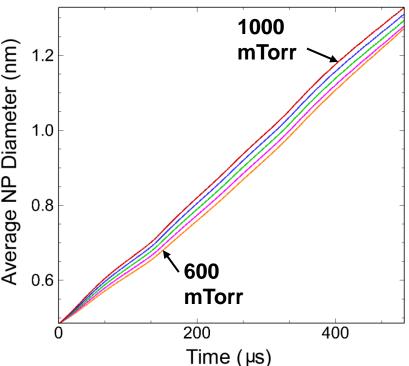

- Based on (prior) Kortshagen reactor.
- ICP, cylindrical quartz tube, 3 coils, 10 MHz, 1 W
- Negligible NP particle density
- Ar/SiH₄ = 99/1.0, 800 mTorr
- 28 species, 186 reactions
- 4 particle growth reactions

BASE CASE PLASMA PROPERTIES

 High negative ion density due to high rate of SiH₄ dissociation and electron attachment.
 University of Michigan

BASE CASE PARTICLE GROWTH

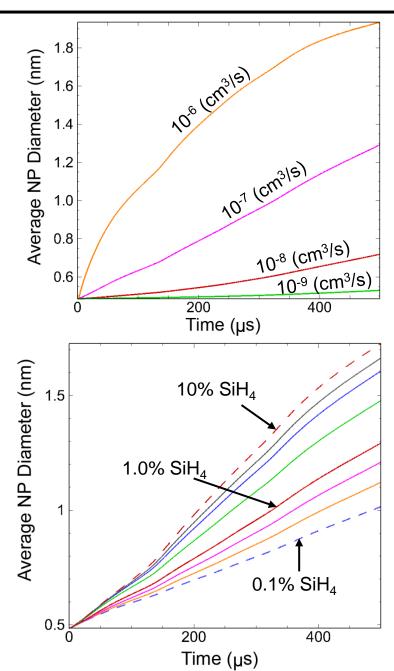

- NP starts as Si₃
- Initial growth mechanism:


$$Si_2H_2 + SiH_n \rightarrow NP$$

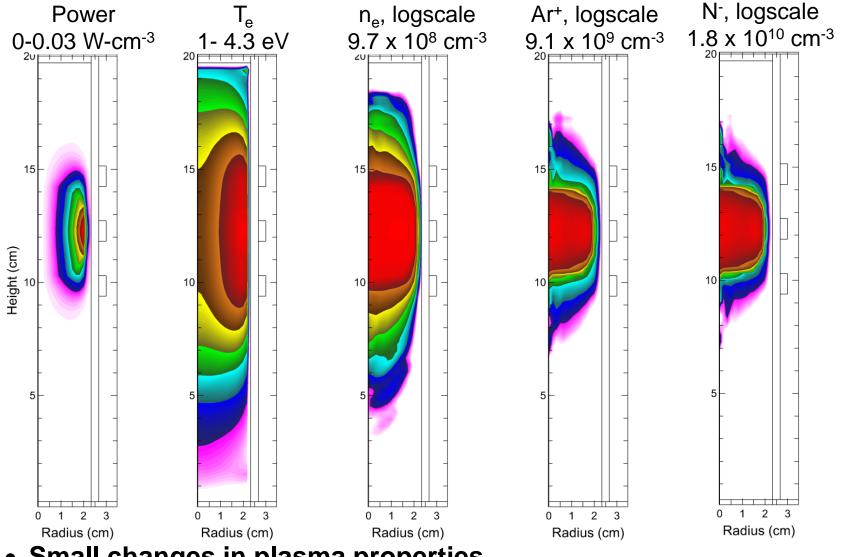
 $SiH_n + NP \rightarrow NP + nH$

- Decreasing nucleation rate with increasing n
- Neutral NPs form near surfaces due to longer residence time and lower axial density by gas heating.

Animation Slide

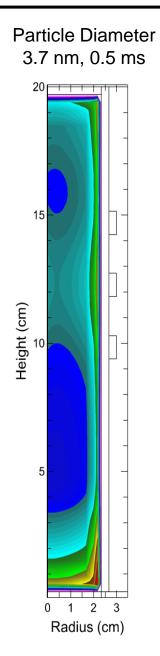

POWER AND PRESURE DEPENDENCE

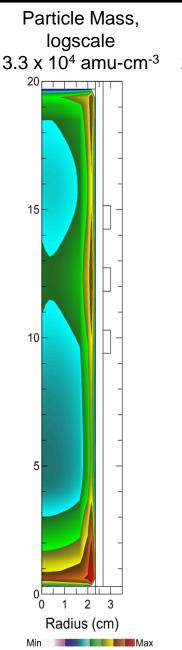
- Vary pressure with power = 1W
- Vary power with pressure = 800mTorr
- Increase in NP size
 - With pressure due to longer residence time.
 - With power due to higher radical densities.
 - Ar/SiH₄ = 99/1.0, 800 mTorr, 1 W, 5 sccm

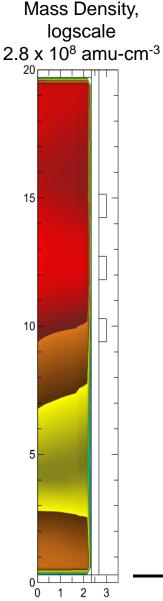

INLET FRACTION AND NUCLEATION RATE

- Higher rates of nucleation have higher initial growth rates.
- Average NP diameter will saturate when precursors are depleted.
- High inlet fraction leads to higher growth rates – simply more precursors that are not depleted.

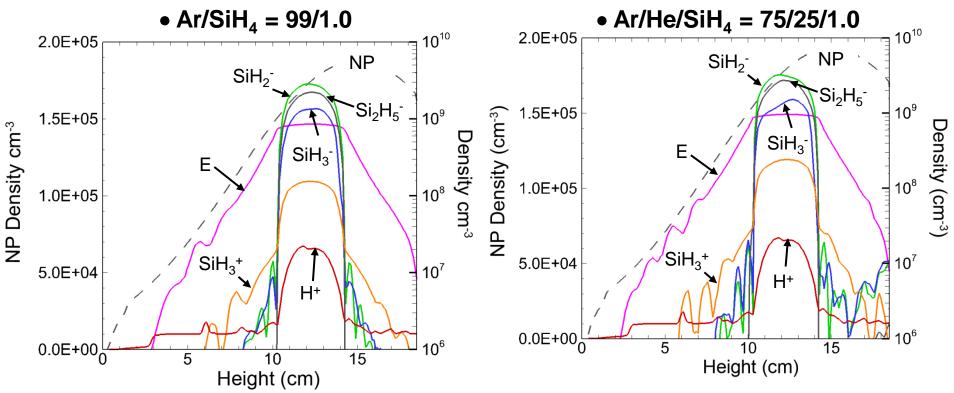
Ar/SiH₄ = 99/1.0, 800 mTorr, 1 W, 5
 sccm


$Ar/He/SiH_4 = 75/24/1$: PLASMA PROPERTIES




Small changes in plasma properties.

PARTICLE GROWTH: Ar/He/SiH₄ = 75/24/1



Radius (cm)

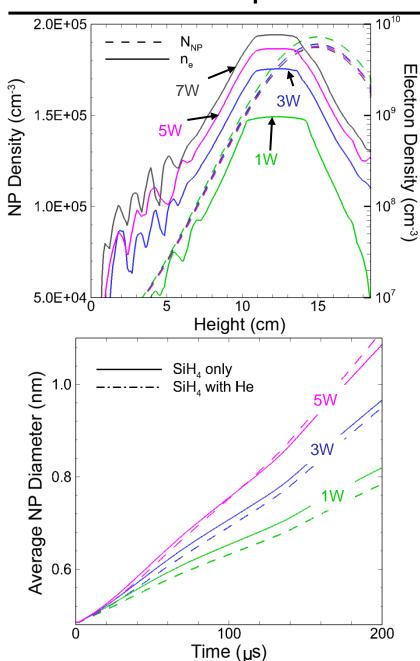
- Growth patterns are similar to Ar/SiH₄ mixtures.
- Larger areas of nucleation due to higher ion concentration and rate of SiH₄ dissociation.
- Addition of He expected to have higher particle growth rate.

Animation Slide

HELIUM DILUTION: NANOPARTICLES

- Radius = 1.25 cm
- Highest NP densities occur upstream of coils (larger height)
 where SiH₄ density and radical densities are higher.
- Addition of He slightly increases ion and NP concentration, but otherwise has no significant effect on bulk plasma properties.

CONCLUDING REMARKS


- A particle growth model was developed and implemented into existing HPEM structure.
- The neutral channel for NP growth occurs dominantly near walls where residence times are longer.
- Addition of He as an inlet gas does not significantly change bulk plasma properties while changing ion composition.
- Addition of He is expected to yield higher particle growth rates due to higher rate of SiH₄ dissociation leading to higher precursor radical concentrations.
- Mechanism to be refined to include
 - H₂(v), SiH₄(v), Si, Si₂, SiH_n+, Si_nH_m-
 - More complete nucleation kinetics
 - Charged particle based growth in fluid approach

$Ar/He/SiH_4 = 75/24/1.0 MIXTURES$

- 20 cm height, 2.5 cm radius
- Cylindrical quartz tube
- 5 sccm Ar/He/SiH₄ 0.75 / 0.24 / 0.01
 inlet flow
- One coil set, three turns
- 1W deposited power, 10MHz frequency
- 800mTorr
- Initial particle density ~ 0 cm⁻³
- 39 species, 307 reactions
- 4 particle growth reactions

Process	Rate of Reaction (cm ³ /s)
Attachment	10-9
Detachment	10-10
Neutralization	$10^{-7} - 10^{-8}$
Charge Exchange	10-11
Hydrogen Elimination	10-9
Dissociation by He	$10^{-7} - 10^{-9}$
Dissociation by Ar	$10^{-10} - 10^{-11}$
Nucleation	10-7
Growth	$10^{-10} - 10^{-12}$

$Ar/He/SiH_4 = 75/24/1.0 MIXTURES: POWER$

- •As in the case of Ar/SiH₄, growth rate increases with increasing power.
- •Compared to Ar/SiH₄, addition of He lowers growth rate at lower powers.
 - •Multiple pathways for dissociation lead to higher positive ion (N⁺) concentration while negative ion concentration remains same.
 - •Longer time needed for precursor species creation until N⁻ concentration balances N⁺ concentration.
- •Expect that after a longer time, addition of He will increase growth rate, as in the 5W case.