Plasma in Earth’s Magnetosphere: Applying the Virial Theorem to High Fidelity Simulation
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B. Virial Theorem & Biot Savart Law [

A. Plasma in Geospace

Background: Space plasma affects life on earth

Ring Current as a collection of particles
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« Using simulation, magnetic perturbation
can be calculated directly or related to
energy state and surface properties of an
arbitrary volume via the Virial Theorem.
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Fig. 1: Sensitive infrastructure can be damaged by
magnetic perturbations.

* Energy changes in specific regions of the system can be linked to
external an internal dynamics

. Virial: Jdr [momentum] -r = 0

» Subtract virial of empty dipole, collect terms and simplify [1]

* Relates magnetic perturbation, surface momentum flux (forces), and volume integrated . Virial theorem allows quantification of specific dynamics to observed
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Biot Savart law
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steady increase in Lobe magnetic energy.

* As Lobe energy increases, the Closed region also increases, consistent with the Dungey
cycle. Its total energy is made up of both magnetic and thermal.
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* Directly calculate perturbation by
integrating current densities | re A

* |Indirectly related to energy

4

/

B - Lo [ G xr
V

r

() - - \ e —— o g e "
E - ‘4‘5 o A ~ . . . . . .
£, Y W NG « I>: As solar wind magnetic field turns northward and dynamic pressure increase the
_-‘!)— u u L] L] L]
3 4 i V4 r'""""'""‘l"" " energy flow to the lobes is cutoff but energy in the Closed region rapidly increases as
=0 T/, .
g 07 "*-..\ ,J‘\‘ el V7 Lobe energy is depleted.
agnetosphere System I [ -~ i
| © —i0 Io-' ] _
& | —— lobes " ] uB dist [J]
° . @ —100 : closedRegion Y 'f'ﬂ 2'6_. KE [J]
Magnetopshere Definition k= | J VA ) > Etherm [J]
Neutral —125 ' W £ 4
point - Bow shock 18—06:00  18—12:00  18—18:00  19—00:00  19—06:00  19—12:00  19—18:00  20—00: 00 g
. . . 8—06 : 8—12 : O 8—18: —00 : ( —06 : —12: —18: 20—00 : 2
» Dominated by planetary dipole field Time [UTC] S e

-~
L—

Fig. 6: Time traces showing magnetosphere sub-volume contributions to
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magnetic perturbation according to Virial and Biot Savart law formulations.
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Newly open flux (2 &3) is

1. Virial Theorem can accurately predict magnetic

perturbation and agrees with Biot Savart law calculation.
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Fig. 3: Diagram of Dungey cycle.
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magnetic field B, < 0

quantify external energy flux, dayside reconnection, and

tail reconnection effects.
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This work was carried out using the SWMF and BATS-R-US tools developed at the University of Michigan’s Center for Space Environment Modeling (CSEM). The modeling tools described are available online This research was funded as part of the NASA DRIVE Center SOLSTICE (Grant Number 80NSSC20K0600)

through the University of Michigan for download and are available for use at the Community Coordinated Modeling Center (CCMC) as well as through Github at https://github.com/MSTEM-QUDA.



