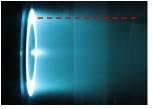


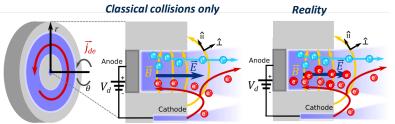
Probabilistic evaluation of closure models for the Hall thruster anomalous collision frequency


Thomas A. Marks¹ Benjamin A. Jorns²

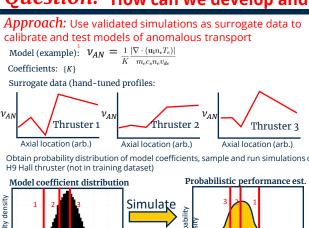
Problem: Current Hall thruster simulations are not predictive due to incomplete understanding of electron transport physics.

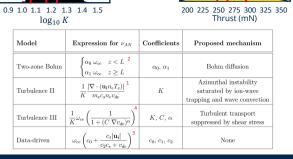
Hall thrusters

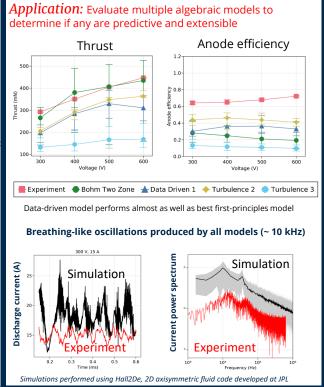
Annular $\vec{E} \times \vec{B}$ discharge used to accelerate ions for spacecraft propulsion

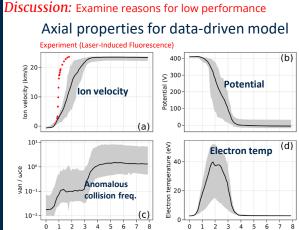


H9 Hall thruster, developed by Jet Propulsion Laboratory, Air Force Research Laboratory, and University of Michigan


Anomalous electron transport


Electrons diffuse across magnetic field lines much faster than classical theory predicts, so simulations cannot match experiment without hand-tuning. Model as extra "anomalous collision frequency" (v_{AN}) in electron momentum equation


Ohm's law:
$$(\nu_e + \frac{\nu_{AN}}{a})\frac{m_e}{a}\overrightarrow{j_e} = qn_e\overrightarrow{E} + \nabla P_e - \overrightarrow{j_e} \times \overrightarrow{B}$$



Ouestion: How can we develop and test models of anomalous transport while accounting for model uncertainty?

Relaxed acceleration profile due to large anomalous transport near exit-plane yields low beam, divergence, mass utilization efficiencies. Algebraic models may not have sufficient feedback to steepen profiles.

Conclusion:

- Algebraic models tend to under-predict performance when calibrated on steady-state data
- Breathing-like oscillations consistently reproduced
- Bayesian techniques can quantify model uncertainty

 \vec{B} : Magnetic field \vec{E} : Electric field

 v_{AN} : Anomalous collision freq. v_e : Classical electron collision freq.

 ω_{ce} : Electron cyclotron freq.

 m_a : Electron mass

 T_{α} : Electron temp.

 P_e : Electron pressure

 n_e : Electron number density $\vec{j_e}$: Electron current density v_{de} : Electron drift speed

u_i: Ion velocity c_s : Ion acoustic speed

¹T. Lafleur et al. Physics of Plasmas 23, 053503 (2016)

²B. Jorns, Plasma Sources Sci. Technol. 27 104007 (2018)

³K. Hara et al, J. Appl. Phys. 115, 203304 (2014)

4M. K. Scharfe et al, IEEE Transactions on Plasma Science 36, 05 (2008)