

Pulsed-power Magnetized Shocks Under an External Magnetic Field

Raul Melean, Rachel Young, Sallee Klein, Akash Shah, Brendan Sporer, George Dowhan, Trevor Smith, Paul C Campbell, Nicholas Jordan, Ryan McBride, Carolyn Kuranz.

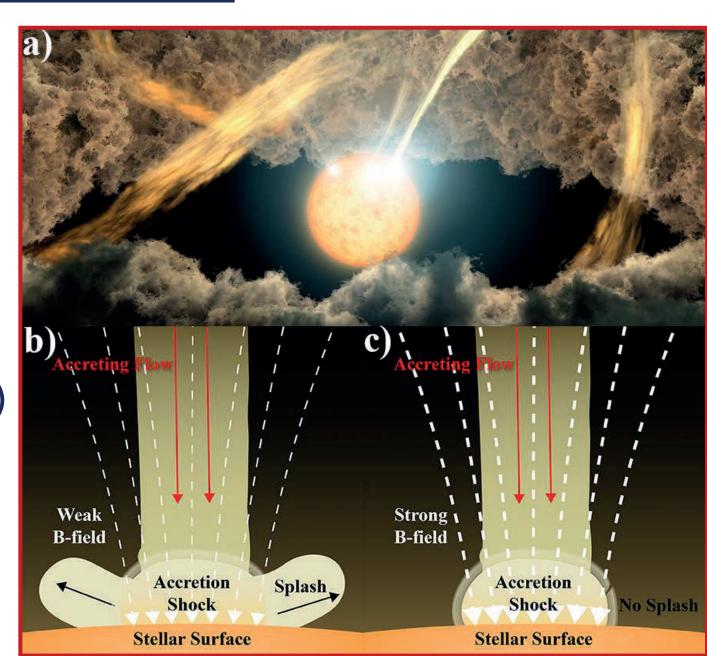
Center for Laboratory Astrophysics & Plasma; Pulsed Power and Microwave Laboratory

UNIVERSITY OF MICHIGAN

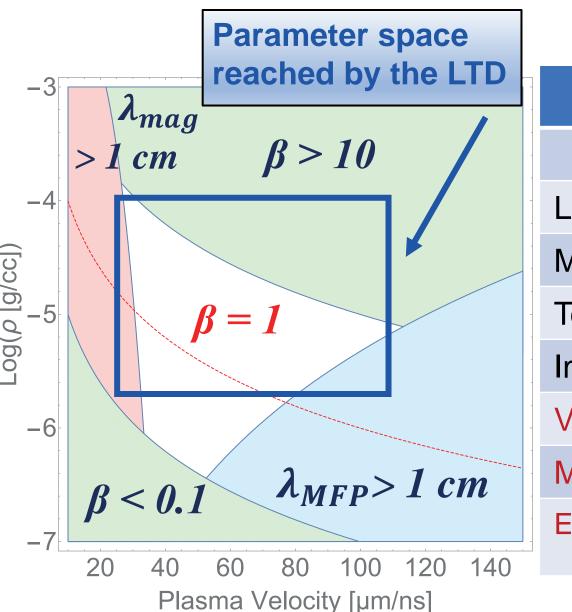
•3D Printed

Stainless steel

Up to 20 wires


37° wire angle

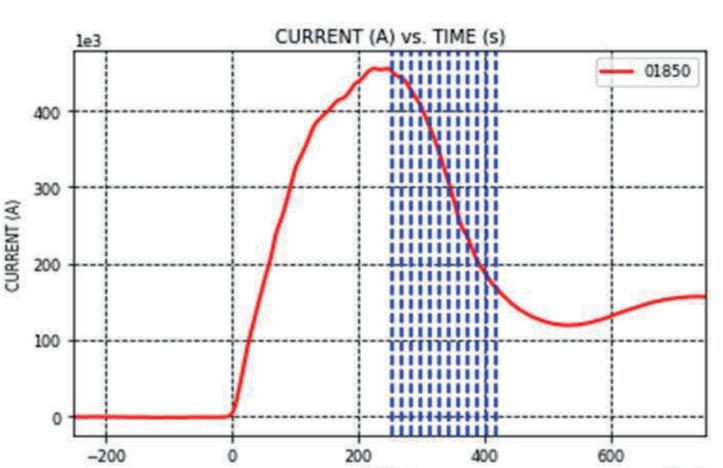
Introduction


We aim to study the properties of accretion shocks generated by streaming material falling into growing stars that are characterized for having strong magnetic fields by scaling the behavior observed in astrophysical data with laboratory astrophysics experiments. In particular, we are interested in the effect of magnetic fields in shock expansion and its connection to the determination of mass accretion in the evolution of young stars. To accomplish this, we generate plasma jets via pulsed-power in the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) and subjecting the shock to a strong (5 T) magnetic field. Additionally, one of the primary goals for these experiment is to expand the laboratory astrophysics capabilities at the University of Michigan in order to build a framework for pulsed-power HEDP experiments.

Accretion Shocks

- Material is lifted out of the accretion disc and "funneled" along magnetic field lines
- •The supersonic material impacts the star's surface creating a shock
- •Increase in pressure and temperature (100 eV to 1 keV) emitting soft X-rays
- The magnetic field affects shock expansion, resulting in a difference in the "splash"

Scaling determines the plasma parameter goals



	Accretion Shock Experiments on MAIZE		
-	Parameter	Star [1]	Experiment [2]
	Length scale	10 ⁹ cm	1 cm
	Material	Hydrogen	Aluminum
	Temperature	100 eV	10 eV
	Imposed field	0.2 T	5 T
	Velocity	400 km s ⁻¹	30 - 150 km s ⁻¹
	Mass Density	10 ⁻¹¹ g cm ⁻³	3.2×10 ⁻⁶ - 10 ⁻⁴ g cm ⁻³
	Electron Density	10 ¹² cm ⁻³	10 ¹⁷ - 10 ¹⁸ cm ⁻³

Wacuum Chamber Helmholtz Coil Capacitors Switch Target Conical Feed

Magnetized plasma jets are created at the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) lab, using the Linear Transformer Driver (LTD). MAIZE can reach 1 Mega-Amp of current, with a 100 – 250 rise time.

LTD Current Profile at ±60 kV

Calibrations and Diagnostics

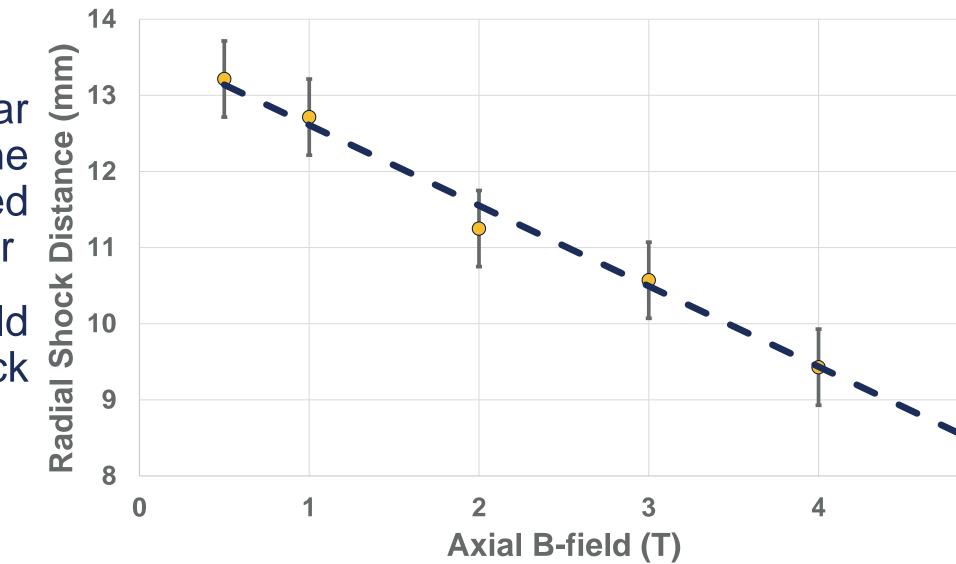
- Self Emission: Fast Camera (up to 200,000 fps, 5 ns gate)
- Speed of plasma flow
- Structure of shock
- Rogowski coil and B-dots
- Current
- Magnetic Field

Experimental Set-Up

Conical wire array creates a plasma jet that is driven into the obstacle External B-Field

- Current pulse ablates the wires
 Ablated plasma collides in the center, creating a narrow jet
 An external B-field parallel to the jet "funnels" the plasma
- A shock is generated as the plasma collides with the obstacle
 Strength of B-field should determine the spread of shock

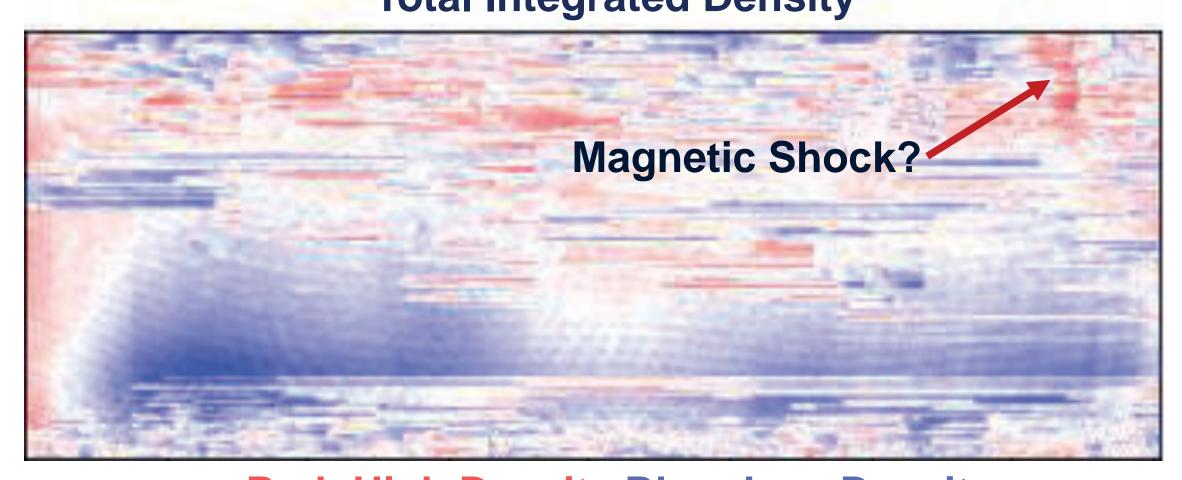
over the obstacle


Obstacle Shock

Comparison of the Plasma Shock Subjected to Different Magnetic Fields

• The unexpected linear relation may indicate the plasma is being slowed before hitting the barrier

• A doubling of the B-field only shrinks the shock position by ~10%



Preliminary Interferometry Analysis

Reference Pattern

Pattern with Plasma

Total Integrated Density

Red: High Density Blue: Low Density

Summary and Conclusions

- We present the capabilities of MAIZE as a mega-amp, pulsedpower, university-scale facility for laboratory astrophysics research.
- Successful deployment of conical wire-arrays as a source of magnetized plasma flows.
- Successfully recorded interaction between the axial B-field and magnetized flow.
- The external magnetic field deflects the plasma shock proportionally to the strength of the field. But the linear relation presents an unexpected result that requires further analysis.
- Preliminary interferometry data seems to confirm the existence of a high-density shock perpendicular to the flow direction and parallel to the B-field.
- We will continue this analysis integrating both datasets and hope to find a better understanding of the behavior of magnetize shocks.

References

- [1] R. P. Young, C. C. Kuranz, R. P. Drake, and P. Hartigan, "Accretion shocks in the laboratory: Design of an experiment to study star formation," High Energy Density Phys., vol. 23, pp. 1–5, 2017.
- [2] S. V. Lebedev et al., "Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets," Plasma Physics and Controlled Fusion, Vol. 47, no. 12B, 2005.
- [3] J. Kane et al., "Scaling supernova hydrodynamics to the laboratory," Phys. Plasmas, vol. 6, no. 5, pp. 2065–2071, 1999.
- [4] D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. a. Remington, and W. M. Wood-Vasey, "Similarity criteria for the laboratory simulation of supernova hydrodynamics," Astrophys. J., vol. 698, no. 2, pp. 2144–2144, 2009.
- [5] M. G. H. Aines, A. F. Rank, E. G. B. Lackman, and T. G. Ardiner, "Laboratory astrophysics and collimated stellar outflows: the production of radiatively cooled hypersonic plasma jets," vol. 1, pp. 113–119, 2002.

<u>Acknowledgments</u>

This work is supported by the U.S. Department of Energy's NNSA SSAP under cooperative agreement numbers DE-NA0003869 and DE-NA0003764.

