Indirect Azimuthal Current Measurement in an RMF Thruster

Christopher L. Sercel, Tate M. Gill, Joshua M. Woods and Benjamin A. Jorns University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI 48109

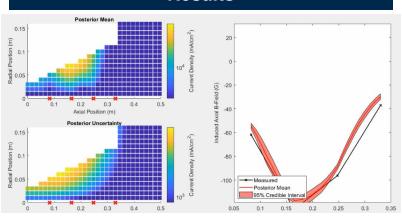
Motivation

- Rotating Magnetic Field (RMF) thrusters could fill the role of high-power (>100 kW), propellant-agnostic thruster
- However, direct thrust data shows significantly lower performance (≈1%) than anticipated
- Understanding the processes behind plasma acceleration requires knowledge of time- and spatially-resolved current density in the thruster
- To address the question of what acceleration mechanisms are dominant in the RMF thruster, there is a need for a time- and spatially-resolved current density measurement scheme

Bayesian Approach

$$Posterior(I|B_{CL}) = \frac{Prior(I)Likelihood(B_{CL}|I)}{Evidence(B_{CL})}$$

- A prior distribution for the spatially-resolved current I can be updated by comparing modelled centerline induced B-field to measurements B_{CL}
- Linear Gaussian Likelihood and Prior allow for analytic form of Posterior – much faster than using Monte Carlo methods

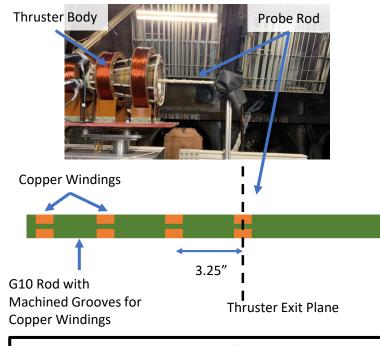

$$\mu_{post} = m_0 + \Sigma_0 A^T (A \Sigma_0 A^T + \Gamma)^{-1} (y - A m_0)$$

Update Term depends on:

- Prior variance Σ_0
- Current-to-Bfield Matrix A
- Data noise Γ
- Data y

Prior mean

Results


Thruster Setpoint: 45 sccm Xe steady flow rate, 2.5 kA pk-to-pk RMF antenna current. Frame captured at 125 μ s into 200 μ s pulse

Left: Mean and Uncertainty for Posterior current density. Right: Measured centerline B-field, plotted with field associated with Posterior current densities

Conclusions

- We can successfully reproduce centerline magnetic field using Bayesian regression
- Plasmoid formation and translation is observed, along with magnetic field-reversal (FRC is formed)
- Self-induced magnetic field dominates applied bias field, necessitating a stronger bias field
- Very little current appears close to centerline, meaning mass flow along center of cone is not accelerated. A coaxial design could improve this

Experimental Setup

Four inductive probes are situated at different positions along thuster centerline to measure induced axial B-field

References

- [1] Polzin, Kurt, et al. "State-of-the-Art and Advancement Paths for Inductive Pulsed Plasma Thrusters." *Aerospace* 7.8 (2020): 105.
- [2] Weber, Thomas. "The electrodeless Lorentz force thruster experiment". Diss. 2010.
- [3] Mullins, Carl R., et al. "Non-invasive Hall current distribution measurement in a Hall effect thruster." Review of Scientific Instruments 88.1 (2017): 013507.

Contact: csercel@umich.edu

This work was partially supported by the NASA Space Technology Research Fellowship under Grant 80NSSC18K1190

