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Introduction Model (continued)

Vortex rings are a primary flow feature in many classical fluid
applications, where their behavior is well understood, but are also
important in flows unstable to the Richtmyer-Meshkov instability (RMI)
including inertial confinement fusion (ICF) Implosions and
astrophysics. Objective: generalize the classical vortex ring
scaling theory to encompass rings ejected from shocked
interfaces, enable advancements in ICF and astrophysics.

Based on principles of energy, impulse, and circulation conservation,
the formation number for vortex rings ejected from shock-accelerated
Interfaces Is greater than their classical counterparts by a factor, o,
that is a function of the shock strength and interface Atwood number.

Examining the vortex ring circulation as a function of the initial hole
aspect ratio indicates that the formation number has been reached.
Furthermore, the formation number model prediction agrees very well

with that inferred from simulations.
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Figure 1: Vortex rings generated in the RMI (upper left), ICF implosions (lower left), and a water tank (right).

We extend the vortex ring scaling theory via an analogy between the
classical piston-cylinder-generated vortex rings and those ejected
from shock-accelerated interfaces.
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Figure 2: The analogy between classical rings (left) and those ejected form shock-accelerated interfaces (right).
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Figure 3: Theory (left) giving the formation number (right) of rings ejected from shock-accelerated interfaces
expressed as a multiple of the classical formation number. Symbols represent verification simulation conditions.

Results and Verification

Simulations performed with our
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Figure 5: The vortex ring circulation as a function of the initial hole aspect ratio (left) and the formation number

iInferred from simulation as a function of the prediction of the model (right).

Case Pu'/Pu A 3.00 4.60 (L/D)sat, rmI
1 1.17 0.33 3.94 6.05 5.16
2 1.34 0.33 4.27 6.54 5.52
3 1.17 0.67 4.42 6.78 5.47
4 1.34 0.67 4.65 7.13 6.03

Table 1: The conditions for the four sets of verification simulations, the range of predicted formation numbers

discontinuous-Galerkin code solving the 3D Euler equations appear to
demonstrate that vortex rings ejected from shock-accelerated
Interfaces share many gqualities with their classical counterparts.
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Figure 4: The evolution of a heavy-fluid hole with aspect ratios L/D = 1 (left) and L/D = 5 (right) along an A =
0.33 interface following the passage of a shock of strength py,/py = 1.34 showing the ejection of a vortex ring.

given as multiples of the classical range, and the formation numbers inferred from simulation.

Conclusions and Acknowledgement

The classical vortex ring scaling has been generalized to include
those ejected from shock-accelerated interfaces. Our model is able to
accurately predict the formation number of such rings, with critical
Implications to ICF implosions and astrophysical mixing, as well as
the development of more general RMI flows.
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