

Understanding Temperature Inhibition of Methane Conversion in DBD Plasma Using Electrical Characterization and Optical Emission Spectroscopy

Ibukunoluwa Akintola¹, Gerardo Rivera-Castro², Jinyu Yang¹, Jeff Secrist², Jason C. Hicks², David B. Go^{1,2} ¹Department of Aerospace & Mechanical Engineering, ²Department of Chemical & Biomolecular Engineering University of Notre Dame

Motivation

- Flaring of natural gas is a significant environmental and economic loss
- Plasma-catalysis offers opportunity to react methane with N2 to form useful products

www.texasstandard.org

Experimental Approach

- A cylindrical flow-through reactor with an integrated dielectric barrier discharge (DBD) was used
- Plasma characterized using optical emission spectroscopy (OES) and electrical measurements
- Reaction products characterized using gas chromatography (GC)

Schematic of the reactor setup for optical and electrical characterization of the plasma and product formation analysis.

Methodology

 $N_2 + CH_4 \rightarrow N-C$ Products

- CH₄ conversion used as an indicator for product formation Q_{ava}-filament obtained from
- current/voltage trace **Z**_{diel} calculated from slope of

Lissajous curve

Results

- Conversion of methane decreases with increasing reactor temperature
- Changes to reaction chemistry with temperature which affect conversion
- ζ_{diel} shows increase in dielectric permittivity with temperature

▲ CH₄/Ar

Experimental conditions: 50 sccm flow rate (1-1 CH₄/gas), 10 W power, Pressure: 1 atm

Results & Conclusions

- Opposite trends observed for Q_{ava} as a function of temperature and power
- Q_{ava} follows same trend as conversation regardless of experimental conditions
- Unexpected inverse relationship between C-H vibrational temperature and conversion of methane
- Plasma properties also have good correlation with observed trends in conversion

Future Work: Understand the individual effects of reaction chemistry and plasma properties on conversion, determine how it changes with catalyst present, and if conversion inhibition is subject to CH₄ only

Acknowledgements:

This work was supported by the U.S. Department of Energy by National Energy Technology Laboratory under Award Number DE-FE0031862.

power (W)