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Experimental Setup

• Magnetic nozzles convert random
thermal energy into directed kinetic
flow.

• Magnetic nozzles are inherently
advantageous for small satellite
propulsion applications.

• Electron Cyclotron Resonance (ECR)
heating utilizes the natural gyration of
charged particles in a magnetic field.
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𝑚𝑒
Thruster Operation

• Neutral gas is injected into the source tube.

• Microwave radiation (2450MHz) is injected
into the source tube through an antenna.

• Electrons within the resonance zone (875G)
are heated.

• These electrons collide with neutrals ionizing
them thus forming a plasma.

• Electrons follow the weaker B-field
downstream.

• An ambipolar electric field between the
electrons and ions accelerates ions from the
source tube.

• Wall losses are a dominate power loss
mechanism in these devices.

• As the energy is primarily injected into
the electrons, we look to accurately
model the electron energy loss to the
walls.

• We incorporate the effect of secondary
electron emission (SEE) in the sheath
potential to more accurately model the
electron energy loss to the walls.

𝑃𝑎𝑏𝑠 = 𝑃𝑏𝑤 + 𝑃𝑟𝑤+ 𝑃𝑒𝑥 Quasi-1D analytical discharge model

This global source model builds on the helicon
thruster model first proposed by T. Lafleur [1],
which uses semi-empirical 1D mass and
momentum conservation equations coupled to a
0D energy conservation equation, to predict
thruster performance.

Discharge Model
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Conclusions

• Thrust efficiency predictions from our model has yet to coincide with data even
in the case of a space charge limited sheath potential.

• Thrust predictions begin to coincide with experimental data as the SEE yield
goes towards unity. However, data from insulating materials still show higher
thrust than predicted.

• These results imply that perhaps a smaller sheath potential due to SEE may not
be the only factor contributing to the lower wall losses we observe with
insulating source tube materials.

Future Work

• SEE yield as a function of primary electron temperature energy.

• SEE yield is different for different areas of the source region.

• Langmuir Probe measurements of electron temperature.
Plasma

Materials
• Aluminum
• Graphite
• Boron Nitride
• Aluminum Oxide

𝑃𝑏𝑤 = 𝐼𝜀 = 𝑞Γ𝐴(𝜀𝑐 + 𝜀𝑖𝑐 + 𝜀𝑒𝑐)

𝑃𝑒𝑥 = 𝐼𝜀 = 𝑞Γ𝐴(𝜀𝑐 + 𝜀𝑖𝑜 + 𝜀𝑒𝑜)
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No SEE, ∆∅ is high, Γ𝑖 = Γ𝑒
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Bulk
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SEE, ∆∅ is lower, Γ𝑖 + Γ𝑠𝑒 = Γ𝑒
Boron Nitride 𝛾 = 0.983 (Space charge limited)
Aluminum 𝛾 = 0.75

𝛾 = 0.1
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